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SUMMARY

Data on ‘neural coding’ have frequently been analyzed using information-theoretic measures. These
formulations involve the fundamental and generally difficult statistical problem of estimating entropy.
We review briefly several methods that have been advanced to estimate entropy and highlight a method,
the coverage-adjusted entropy estimator (CAE), due to Chao and Shen that appeared recently in the
environmental statistics literature. This method begins with the elementary Horvitz–Thompson estimator,
developed for sampling from a finite population, and adjusts for the potential new species that have not yet
been observed in the sample—these become the new patterns or ‘words’ in a spike train that have not yet
been observed. The adjustment is due to I. J. Good, and is called the Good–Turing coverage estimate. We
provide a new empirical regularization derivation of the coverage-adjusted probability estimator, which
shrinks the maximum likelihood estimate. We prove that the CAE is consistent and first-order optimal,
with rate OP (1/ log n), in the class of distributions with finite entropy variance and that, within the class
of distributions with finite qth moment of the log-likelihood, the Good–Turing coverage estimate and
the total probability of unobserved words converge at rate OP (1/(log n)q). We then provide a simulation
study of the estimator with standard distributions and examples from neuronal data, where observations
are dependent. The results show that, with a minor modification, the CAE performs much better than the
MLE and is better than the best upper bound estimator, due to Paninski, when the number of possible
words m is unknown or infinite. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of ‘neural coding’ is to elucidate the representation and transformation of information
in the nervous system [1]. An appealing way to attack neural coding is to take the otherwise vague
notion of ‘information’ to be defined in Shannon’s sense, in terms of entropy [2]. This project began
in the early days of cybernetics [3, 4], received considerable impetus from work summarized in the
book Spikes: Exploring the Neural Code [5], and continues to be advanced by many investigators.
In most of this research, the findings concern the mutual information between a stimulus and a
neuronal spike train response. For a succinct overview, see [6]. The mutual information, however,
is the difference between marginal and expected conditional entropies; in computing it from data,
one is faced with the basic statistical problem of estimating the entropy‡

H :=− ∑
x∈X

P(x) log P(x) (1)

of an unknown discrete probability distribution P over a possibly infinite space X, the data being
conceived as random variables X1, . . . , Xn , with Xi distributed according to P . An apparent
method of estimating the entropy is to apply the formula after estimating P(x) for all x ∈X,
but estimating a discrete probability distribution is, in general, a difficult nonparametric problem.
Here, we point out the potential use of a method, the coverage-adjusted estimator (CAE), due to
Chao and Shen [7], which views estimation of entropy as analogous to estimation of the total of
some variable distributed across a population, which in turn may be estimated by a simple device
introduced by Horvitz and Thompson [8]. We provide an alternative derivation of this estimator,
establish the optimality of its rate of convergence, and provide simulation results indicating that it
can perform very well in finite samples—even when the observations are mildly dependent. The
simulation results for data generated to resemble neuronal spike trains are given in Figure 1, where
the estimator is labeled CAE. In Section 2, we provide background material. Section 3 contains
our derivation of the estimator and the convergence result, and Section 4 the description of the
simulation study and additional simulation results.

2. BACKGROUND

In linguistic applications, X could be the set of words in a language, with P specifying their
frequency of occurrence. For neuronal data, Xi often represents the number of spikes (action
potentials) occurring during the i th time bin. Alternatively, when a fine resolution of time is used
(such as �t = 1ms), the occurrence of spikes is indicated by a binary sequence, and Xi becomes
the pattern, or ‘word,’ made up of 0–1 words or ‘letters,’ for the i th word. This is described in
Figure 2, and it is the basis for the widely used ‘direct method’ proposed by Strong et al. [11]. The
number of possible words m := |{x ∈X : P(x)>0}| is usually unknown and possibly infinite. In the
example in Figure 2, the maximum number of words is the total number of 0–1 strings of length
T . For T = 10 this number is 1024; for T = 20 it is well over one million, and in general there
is an exponential explosion with increasing T . Furthermore, the phenomenon under investigation

‡Unless otherwise stated, we take all logarithms to be base 2 and define 0 log 0= 0.
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Figure 1. Comparison of entropy estimators in terms of root mean-squared error (RMSE), as a function
of sample size, for word lengths T = 6 from V1 data (left) and T = 15 from Field L data (right). Full
definitions are given in Section 4. The samples of size n are drawn from a stationary variable length
Markov chain (VLMC) [9] used to model neuronal data from visual (V1) and auditory (Field L) systems.
We followed the ‘direct method’ and divided each sample sequence into words, which are blocks of length
T . The plots display the RMSE of the estimates of H/T . The RMSE was estimated by averaging 1000
independent realizations. MLE is the ‘naive’ empirical plug-in estimate. CAE is the coverage-adjusted
estimator. BUB+ is the BUB estimator [10] with its m parameter set to the maximum possible number
of words (V1: 6T = 46 656, Field L: 2T = 32 768). BUB− is the BUB estimator with m set, naively, to
the observed number of words. The actual values of H/T are V1: 1.66 and Field L: 0.151. The BUB+
estimator has a very large RMSE resulting from specifying m as the maximum number of words. The
CAE estimator performs relatively well, especially for sample sizes as small as several hundred words.
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Figure 2. The top row depicts 45ms of a hypothetical spike train. The ticks on the time axis demarcate
�t = 1ms bins (intervals). The spike train is discretized into a sequence of counts. Each count is the
number of spikes that fall within a single time bin. Subdividing this sequence into words of length T = 10
leads to the words shown at the bottom. The words X1, X2, . . . take values in the space X= {0, 1}10

consisting of all 0–1 strings of length 10.

will often involve fine time resolution, necessitating a small bin size �t and thus a large T . For
large T , the estimation of P(x) is likely to be challenging.

We note that Strong et al. [11] calculated the entropy rate. Let {Wt : t = 1, 2, . . .} be a discretized
(according to �t) spike train as in the example in Figure 2. If {Wt } is a stationary process, the
entropy of a word, say X1 = (W1, . . . ,WT ), divided by its length T is non-increasing in T and
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has a limit as T → ∞, i.e.

lim
T→∞

1

T
H(X1) = lim

T→∞
1

T
H(W1, . . . ,WT ) =: H ′ (2)

exists [12]. This is the entropy rate of {Wt }. The word entropy is used to estimate the entropy
rate. If {Wt } has finite range dependence, then the above entropy factors into a sum of conditional
entropies and a single marginal entropy. Generally, the word length is chosen to be large enough so
that H(W1, . . . ,WT )/T is a close approximation to H ′, but not so large that there are not enough
words to estimate H(W1, . . . ,WT ). Strong et al. [11] proposed that the entropy rate estimate be
extrapolated from estimates of the word entropy over a range of word lengths. We do not address
this extrapolation, but rather focus on the problem of estimating the entropy of a word.

In the most basic case the observations X1, . . . , Xn are assumed to be independent and identically
distributed (i.i.d.). Without loss of generality, we assume thatX⊆ N and that the words§ are labeled
1, 2, . . . . The seemingly most natural estimate is the empirical plug-in estimator

Ĥ := −∑
x
P̂(x) log P̂(x) (3)

which replaces the unknown probabilities in (1) with the empirical probabilities P̂(x) := nx/n,
which is the observed proportion nx/n of occurrences of the word x in X1, . . . , Xn . The empirical
plug-in estimator is often called the ‘naive’ estimate or the ‘MLE’—after the fact that P̂ is the
maximum likelihood estimate of P . We will use ‘MLE’ and ‘empirical plug-in’ interchangeably.
From Jensen’s Inequality, it is readily seen that the MLE is negatively biased unless P is trivial.
In fact no unbiased estimate of entropy exists, see [10] for an easy proof.

In the finite m case, Basharin [13] showed that the MLE is biased, consistent, and asymptotically
normal, with variance equal to the entropy variance var[log P(X1)]. Miller [14] previously studied
the bias independently and provided the formula

EĤ − H =−m − 1

2n
+ O(1/n2) (4)

The bias dominates the mean-squared error of the estimator [15], and has been the focus of recent
studies [10, 16].

The original ‘direct method’ advocated an ad hoc strategy of bias reduction based on a sub-
sampling extrapolation [11]. A more principled correction based on the jack-knife technique was
proposed earlier by Zahl [17]. Formula (4) suggests a bias correction of adding (m − 1)/(2n)

to the MLE. This is known as the Miller–Maddow correction. Unfortunately, it is an asymptotic
correction that depends on the unknown parameter m. Paninski [10] observed that both the MLE
and Miller–Maddow estimates fall into a class of estimators that are linear in the frequencies of
observed word counts f j = |{nx : nx = j}|. He proposed an estimate, ‘Best Upper Bounds’ (BUB),
based on numerically minimizing an upper bound on the bias and variance of such estimates when
m is assumed to be finite and known. We note that in the case that m is unknown, it can be replaced
by an upper bound, but the performance of the estimator is degraded.

§The information theory literature traditionally refers to X as an alphabet and its elements as symbols. It is natural
to call a tuple of symbols a word, but the problem of estimating the entropy of the T -tuple word reduces to that
of estimating the entropy in an enlarged space (of T -tuples).
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Bayesian estimators have also been proposed for the finite m case by Wolpert and Wolf [18].
Their approach is to compute the posterior distribution of entropy based on a symmetric Dirichlet
prior on P . Nemenman et al. [19] found that the Dirichlet prior on P induces a highly concentrated
prior on entropy. They argued that this property is undesirable and proposed an estimator based on
a Dirichlet mixture prior with the goal of flattening the induced prior distribution on entropy. Their
estimate requires a numerical integration and also the unknown parameter m, or at least an upper
bound. The estimation of m is even more difficult than the estimation of entropy [15], because it
corresponds to estimating lima↓0

∑
x [P(x)]a .

In the infinite m case, Antos and Kontoyiannis [15] proved the consistency of the empirical
plug-in estimator and showed that there is no universal rate of convergence for any estimator.
However, Wyner and Foster [20] have shown that the best rate (to first order) for the class of
distributions finite entropy variance or equivalently finite log-likelihood second moment∑

x
P(x)(log P(x))2<∞ (5)

is OP(1/ log n). This rate is achieved by the empirical plug-in estimate as well as an estimator
based on match lengths. Despite the fact that the empirical plug-in estimator is asymptotically
optimal, its finite sample performance leaves much to be desired.

Chao and Shen [7] proposed a coverage-adjusted entropy estimator intended for the case when
there are potentially unseen words in the sample. This is always the case when m is relatively
large or infinite. Intuitively, low probability words are typically absent from most sequences, i.e.
the expected sample coverage is <1, but in total, the missing words can have a large contribution
to H . The estimator is based on plug-in of a coverage-adjusted version of the empirical probability
into the Horvitz–Thompson [8] estimator of a population total. They presented simulation results
showing that the estimator seemed to perform quite well, especially in the small sample size regime,
when compared to the usual empirical plug-in and several bias corrected variants. The estimator
does not require knowledge of m, but they assumed a finite m. We prove here (Theorem 2) that
the coverage-adjusted estimator also works in the infinite m case. Chao and Shen also provided
approximate confidence intervals for the coverage-adjusted estimate; however, they are asymptotic
and depend on the assumption of finite m.

The problems of entropy estimation and estimation of the distribution P are distinct. Entropy
estimation should be no harder than estimation of P , since H is a functional of P . However, several
of the entropy estimators considered here depend either implicitly or explicitly on estimating P .
BUB is linear in the frequency of observed word counts f j , and those are 1-to-1 with the empirical
distribution P̂ up to labeling. In general, any symmetric estimator is a function of P̂ . The only
estimator mentioned above that does not depend on P̂ is the match length estimator. For the CAE,
the dependence on estimating P is only through estimating P(k) for observed words k.

3. THEORY

Unobserved words—those that do not appear in the sample, but have non-zero probability—can
have a great impact on entropy estimation. However, these effects can be mitigated with two
types of corrections: Horvitz–Thompson adjustment and coverage adjustment of the probability
estimate. Section 3.1 contains an exposition of some of these effects. The adjustments are described
in Section 3.2 along with the definition of the resulting coverage-adjusted entropy estimator.
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A key ingredient of the estimator is a coverage-adjusted probability estimate. We provide a novel
derivation from the viewpoint of regularization in Section 3.3. Lastly, Section 3.4 concludes the
theoretical study with our rate of convergence results.

Throughout this section, we assume that X1, . . . , Xn is an i.i.d. sequence from the distribution
P on the countable set X. Without loss of generality, we assume that the P(k)>0 for all k ∈X
and write pk for P(k) = P(Xi = k). As before, m := |X| and possibly m = ∞. Let

nk :=
n∑

i=1
1{Xi = k} (6)

be the number of times that the word k appears in the sequence X1, . . . , Xn , with 1{·} denoting
the indicator of the event {·}.

3.1. The unobserved word problem

The set of observed words S is the set of words that appear at least once in the sequence X1, . . . , Xn ,
i.e.

S := {k : nk>0} (7)

The complement of S, i.e. X\S, is the set of unobserved words. There is always a non-zero
probability of unobserved words, and if m>n or m = ∞ then there are always unobserved words.
In this section, we describe two effects of the unobserved words pertaining to entropy estimation.

Given the set of observed words S, the entropy of P can be written as the sum of two parts:

H =−∑
k∈S

pk log pk − ∑
k /∈S

pk log pk (8)

One part is the contribution of observed words; the other is the contribution of unobserved words.
Suppose for a moment that pk is known exactly for k ∈ S, but unknown for k /∈ S. Then we could
try to estimate the entropy by

−∑
k∈S

pk log pk (9)

but there would be an error in the estimate unless the sample coverage

C := ∑
k∈S

pk (10)

is identically 1. The error is due to the contribution of unobserved words and thus the unobserved
summands:

−∑
k /∈S

pk log pk (11)

This error could be far from negligible, and its size depends on the pk for k /∈ S. However, there
is an adjustment that can be made so that the adjusted version of (9) is an unbiased estimate of
H . This adjustment comes from the Horvitz–Thompson [8] estimate of a population total, and we
will review it in Section 3.2.
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Unfortunately, pk is unknown for both k ∈ S and k /∈ S. A common estimate for pk is the
MLE/empirical p̂k := nk/n. Plugging this estimate into (9) gives the MLE/empirical plug-in
estimate of entropy:

Ĥ := −∑
k
p̂k log p̂k =−∑

k∈S
p̂k log p̂k (12)

because p̂k = 0 for all k /∈ S. If the sample coverage C is <1, then this is a degenerate estimate
because

∑
k∈S p̂k = 1 and so p̂k = 0 for all k /∈ S. Thus, we could shrink the estimate of pk on

S toward zero so that its sum over S is <1. This is the main idea behind the coverage-adjusted
probability estimate; however, we will derive it from the viewpoint of regularization in Section 3.3.

We have just seen that unobserved words can have two negative effects on entropy estimation:
unobserved summands and error-contaminated summands. The ‘size,’ or non-coverage, of the set
of unobserved words can be measured by 1 minus the sample coverage:

1 − C = ∑
k /∈S

pk = P(Xn+1 /∈ S|S) (13)

Thus, it is also the conditional probability that a future observation Xn+1 is not a previously
observed word. So the average non-coverage is

E(1 − C) = P(Xn+1 /∈ S) = ∑
k
pk(1 − pk)

n (14)

and in general E(1 − C)>0. Its rate of convergence to 0, as n → ∞, depends on P and can be
very slow. (See the corollary to Theorem 2.) It is necessary to understand how to mitigate the
effects of unobserved words on entropy estimation.

3.2. Coverage-adjusted entropy estimator

Chao and Shen [7] observed that entropy can be thought of as the total
∑

k yk of an unknown pop-
ulation consisting of elements yk =−pk log pk . For the general problem of estimating a population
total, the Horvitz–Thompson estimator [8],∑

k∈S
yk

P(k ∈ S)
=∑

k

yk
P(k ∈ S)

1{k ∈ S} (15)

provides an unbiased estimate of
∑

k yk , under the assumption that the inclusion probabilities
P(k ∈ S) and yk are known for k ∈ S. For the i.i.d. sequence X1, . . . , Xn , the probability that word
k is unobserved in the sample is (1 − pk)n . So the inclusion probability is 1 − (1 − pk)n . Then
the Horvitz–Thompson adjusted version of (9) is

∑
k∈S

−pk log pk
1 − (1 − pk)n

(16)

All that remains is to estimate pk for k ∈ S. The empirical p̂k can be plugged into the above
formula; however, as we stated in the previous section, it is a degenerate estimate when C<1
because it assigns 0 probability to k /∈ S and, thus, tends to overestimate the inclusion probability.
We will discuss this further in Section 3.3.

In a related problem, Ashbridge and Goudie [21] considered finite populations with elements
yk = 1, so that (15) becomes an estimate of the population size. They found that P̂ did not work
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well and suggested using instead a coverage-adjusted estimate P̃ := Ĉ P̂ , where Ĉ is an estimate
of C . Chao and Shen recognized this and proposed using the Good–Turing [22, 23] coverage
estimator:

Ĉ := 1 − f1
n

(17)

where f1 := ∑
k 1{nk = 1} is the number of singletons in the sequence X1, . . . , Xn . This leads to

the coverage-adjusted entropy estimator:

H̃ :=−∑
k

p̃k log p̃k
1 − (1 − p̃k)n

(18)

where p̃k := Ĉ p̂k . Chao and Shen gave an argument for C P̂ based on a conditioning property of
the multinomial distribution. In the next section, we give a different derivation from the perspective
of regularization of an empirical risk, and give upper bounds for the bias and variance of Ĉ .

3.3. Regularized probability estimation

Consider the problem of estimating P under the entropy loss L(q, x)= −log Q(x), for Q satisfying
Q(k) = qk�0 and

∑
qk = 1. This loss function is closely aligned with the problem of entropy

estimation because the risk, i.e. the expected loss on a future observation,

R(Q) :=−E log Q(Xn+1) (19)

is uniquely minimized by Q = P and its optimal value is the entropy of P . The MLE P̂ minimizes
the empirical version of the risk

R̂(Q) := −1

n

n∑
i=1

log Q(Xi ) (20)

As stated previously in Section 3.1, this is a degenerate estimate when there are unobserved words.
More precisely, if the expected coverage EC<1 (which is true in general), then R(P̂) = ∞.

Analogous to (8), the expectation in (19) can be split into two parts by conditioning on whether
Xn+1 is a previously observed word or not:

R(Q) = −E[log Q(Xn+1)|Xn+1 ∈ S]P(Xn+1 ∈ S)

− E[log Q(Xn+1)|Xn+1 /∈ S]P(Xn+1 /∈ S) (21)

Since P(Xn+1 ∈ S) does not depend on Q, minimizing (21) with respect to Q is equivalent to
minimizing

−E[log Q(Xn+1)|Xn+1 ∈ S] − �∗E[log Q(Xn+1)|Xn+1 /∈ S] (22)

where �∗ = P(Xn+1 /∈ S)/P(Xn+1 ∈ S). We cannot distinguish the probabilities of the unobserved
words on the basis of the sample. So consider estimates Q which place a constant probability on
x /∈ S. Equivalently, these estimates treat the unobserved words as a single class and so the risk
reduces to the equivalent form:

−E[log Q(Xn+1)|Xn+1 ∈ S] − �∗E log

[
1 − ∑

k∈S
Q(k)

]
(23)
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The above expectations only involve evaluating Q at observed words. Thus, (20) is more natural as
an estimate of −E[log Q(Xn+1)|Xn+1 ∈ S] than as an estimate of R(Q). If we let � be any estimate
of the odds ratio �∗ = P(Xn+1 /∈ S)/P(Xn+1 ∈ S), then we arrive at the regularized empirical risk,

R̃(q; �) :=−1

n

∑
i

log Q(Xi ) − � log

[
1 − ∑

i
Q(Xi )

]
(24)

This is the usual empirical risk with an additional penalty on the total mass assigned to observed
words. It can be verified that the minimizer, up to an equivalence, is (1 + �)−1 P̂ . This estimate
shrinks the MLE toward 0 by the amount (1+ �)−1. Any Q that agrees with (1+ �)−1 P̂ on S is a
minimizer of (24). Note that (1+�∗)−1 = P(Xn+1 ∈ S) = EC is the expected coverage, rather than
the sample coverage C . Ĉ can be used to estimate both EC and C ; however, it is actually better as
an estimate of EC because McAllester and Schapire [24] have shown that Ĉ =C+OP(log n/

√
n),

whereas we prove in the appendix the following proposition.

Proposition 1
0�E(Ĉ − C) =−∑

k p
2
k (1 − pk)n−1�(1 − 1/n)n−1/n ∼ −e−1/n and VarĈ�4/n.

So Ĉ is a 1/
√
n consistent estimate of EC . Using Ĉ to estimate EC = (1 + �∗)−1, we obtain

the coverage-adjusted probability estimate P̃ = Ĉ P̂ .

3.4. Convergence rates

In the infinite m case, Antos and Kontoyiannis [15] proved that the MLE is universally consistent
almost surely and in L2, provided that the entropy exists. However, they also showed that there
can be no universal rate of convergence for entropy estimation. Some additional restriction must
be made beyond the existence of entropy in order to obtain a rate of convergence. Wyner and
Foster [20] found that for the weakest natural restriction,

∑
k pk(log pk)2<∞, the best rate of

convergence, to first order, is OP(1/ log n). They proved that the MLE and an estimator based on
match lengths achieve this rate. Our main theoretical result is that the CAE also achieves this rate.

Theorem 2
Suppose that

∑
k pk(log pk)2<∞. Then as n → ∞,

H̃ = H + OP(1/ log n) (25)

In the previous section, we employed Ĉ = 1 − f1/n in the regularized empirical risk (24). As
for the observed sample coverage, C = Pr(Xn+1 ∈ S|S), McAllester and Schapire [24] proved that
Ĉ =Pr(Xn+1 ∈ S|S)+OP(log n/

√
n), regardless of the underlying distribution. Our theorem below,

together with McAllester and Schapire’s, implies a rate of convergence on the total probability of
unobserved words.

Theorem 3
Suppose that

∑
k pk | log pk |q<∞. Then as n →∞, almost surely,

Ĉ = 1 − O(1/(log n)q) (26)
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Corollary 4
Suppose that

∑
k pk | log pk |q<∞. Then as n →∞,

1 − C = Pr(Xn+1 /∈ S|S)= OP(1/(log n)q) (27)

Proof
This follows from the above theorem and Theorem 3 of [24], which implies |Ĉ−Pr(Xn+1 ∈ S|S)|�
oP(1/(log n)q) because

0�Pr(Xn+1 /∈ S|S)�|1 − Ĉ | + |Ĉ − Pr(Xn+1 ∈ S|S)| (28)

and OP(1/(log n)q) + oP(1/(log n)q) = OP(1/(log n)q). �

We defer the proofs of Theorems 2 and 3 to Appendix A. At the time of writing, the only
other entropy estimators proved to be consistent and asymptotically first-order optimal in the finite
entropy variance case that we are aware of are the MLE and Wyner and Foster’s modified match
length estimator. However, the OP(1/ log n) rate, despite being optimal, is somewhat discouraging.
It says that in the worst case we will need an exponential number of samples to estimate the entropy.
Furthermore, the asymptotics are unable to distinguish the CAE from the MLE, which has been
observed to be severely biased. In the next section, we use simulations to study the small sample
performance of the CAE and the MLE, along with other estimators. The results suggest that in
this regime their performances are quite different.

4. SIMULATION STUDY

We conducted a large number of simulations under varying conditions to investigate the perfor-
mance of the CAE and compare with four other estimators:

• Empirical Plug-in (MLE): defined in (3).
• Miller–Maddow corrected MLE (MM): based on the asymptotic bias formula provided by
Miller [14] and Basharin [13]. It is derived from equation (4) by estimating m by the number
of distinct words observed m̂ = ∑

k 1{nk�1} and adding (m̂ − 1)/(2n) to the MLE.
• Jack-knife (JK): proposed by Zahl [17]. It is a bias-corrected version of the MLE obtained
by averaging all n leave-one-out estimates.

• Best Upper Bounds (BUB): proposed by Paninski [10]. It is obtained by numerically mini-
mizing a worst case error bound for a certain class of linear estimators for a distribution with
known support size m.

The NSB estimator proposed by [19] was not included in our simulation comparison because
of problems with the software and its computational cost. We also tried their asymptotic formula
for their estimator in the ‘infinite (or unknown)’ m case:

�(1)/ ln(2) − 1 + 2 log n − �(n − m̂) (29)

where �(z) = �′(z)/�(z) is the digamma function. However, we were also unable to get it to work
because it seemed to increase unboundedly with the sample size, even for m =∞ cases.

There are two sets of experiments consisting of multiple trials. The first set of experiments
concern some simple, but popular model distributions. The second set of experiments deal with
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neuronal data recorded from primate visual and avian auditory systems. It departs from the theo-
retical assumptions of Section 3 in that the observations are dependent.

Chao and Shen [7] also conducted a simulation study of the CAE for distributions with small
m and showed that it performs reasonably well even when there is a relatively large fraction of
unobserved words. Their article also contains examples from real data sets concerning diversity
of species. The experiments presented here are intended to complement their results and expand
the scope.

4.1. Practical considerations

We encountered a few practical hurdles when performing these experiments. The first is that the
CAE is undefined when the sample consists entirely of singletons. In this case Ĉ = 0 and p̃= 0.
The probability of this event decays exponentially fast with the sample size, so it is only an
issue for relatively small samples. To deal with this matter, we replaced the denominator n in the
definition of Ĉ with n + 1. This minor modification does not affect the asymptotic behavior of the
estimator, and allows it to be defined for all cases.¶

The BUB estimator assumes that the number of words m is finite and requires that it be specified.
m is usually unknown, but sometimes an upper bound on m may be assumed. To understand the
effect of this choice, we tried three different variants on the BUB estimator’s m parameter:

• Underestimate (BUB−): The naive m̂ as defined above for the Miller–Maddow corrected
MLE.

• Oracle value (BUB.o): The true m in the finite case and 
2H� in the infinite case.
• Overestimate (BUB+): Twice the oracle value for the first set of experiments and the
maximum number of words |X| for the second set of neuronal data experiments.

Although the BUB estimator is undefined for the m infinite case, we still tried using it, defining
them parameter of the oracle estimator to be 
2H�. This is motivated by the asymptotic equipartition
property [12], which roughly says that, asymptotically, 2H is the effective support size of the
distribution. There are no theoretical guarantees for this heuristic use of the BUB estimator, but
it did seem to work in the simulation cases below. Again, this is an oracle value and not actually
known in practice. The implementation of the estimator the was adapted from a software provided
by the author of [10] and its numerical tuning parameters were left as default.

4.2. Experimental setup

In each trial, we sample from a single distribution and compute each estimator’s estimate of the
entropy. Trials are repeated, with 1000 independent realizations.

4.2.1. Standard models. We consider the four discrete distributions shown in Table I. The uniform
and truncated Zipf distributions have finite support (m = 1024), while the Poisson and geometric
distributions have infinite support. The Zipf distribution is very popular and is often used to model
linguistic data. It is sometimes referred to as a ‘power law’. We generated i.i.d. samples of varying
sample size (n) from each distribution and computed the respective estimates. We also considered

¶Another variation is to add 0.5 to the numerator and 1 to the denominator.
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Table I. Standard models considered in the first set of experiments.

support (k = ) pk H Var[log p(X)]
Uniform 1, . . . , 1024 1/1024 10 0
Zipf 1, . . . , 1024 k−1/

∑
k k

−1 7.51 9.59
Poisson 1, . . . ,∞ 1024k/(k!e1024) 7.05 1.04
Geometric 1, . . . ,∞ (1023/1024)k−1/1024 11.4 2.08

Table II. Fitted VLMC models. Entropy (H ) was computed by Monte Carlo with 106 samples
from the stationary distribution. H/T is the entropy of the word divided by its length.

Depth (ms) X Word length T |X| H H/T

Field L VLMC 232 (232) {0, 1}10 10 1024 1.51 0.151
232 (232) {0, 1}15 15 32 768 2.26 0.150

V1 VLMC 3 (48) {0, 1, . . . , 5}5 5 7776 8.32 1.66
3 (48) {0, 1, . . . , 5}6 6 46 656 9.95 1.66

the distribution of distinct words in James Joyce’s novel Ulysses. We found that the results were
very similar to those of the Zipf distribution and did not include them in this article.

4.2.2. Neuronal data. Here we consider two real neuronal data sets first presented in [25]. A subset
of the data are available from the Neural Prediction Challenge.‖ We fit a variable length Markov
chain (VLMC) to subsets of each data set and treated the fitted models as the truth. Our goal was
not to model the neuronal data exactly, but to construct an example that reflects real neuronal data,
including any inherent dependence. This experiment departs from the assumption of independence
for the theoretical results. See [9] for a general overview of the VLMC methodology.

From the first data set, we extracted 10 repeated trials, recorded from a single neuron in the
Field L area of the avian auditory system during natural song stimulation. The recordings were
discretized into �t = 1ms bins and consist of sequences of 0s and 1s indicating the absence or
presence of a spike. We concatenated the 10 recordings before fitting the VLMC (with state space
{0, 1}). A complete description of the physiology and other information theoretic calculations from
the data can be found in [26].

The other data set contained several separate single-neuron recording sequences from the V1
area of the primate visual system, during a dynamic natural image stimulation. We used the longest
contiguous sequence from one particular trial. This consisted of 3449 spike counts, ranging from
0 to 5. The counts are the number of spikes occurring during consecutive �t = 16ms periods. (For
the V1 data, the state space of the VLMC is {0, 1, 2, 3, 4, 5}.) The resulting fits for both data sets
are shown in Table II. Note that, for each VLMC, H/T is nearly the same for both choices of
word length (cf. the remarks under Equation (2) in Section 2).

The (maximum) depth of the VLMC is a measure of time dependence in the data. For the Field
L data, the dependence is long, with the VLMC looking 232 time periods (232ms) into the past.

‖http://neuralprediction.berkeley.edu
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Figure 3. The two distributions considered here have finite support, with m = 1024. (Left) The estimated
entropy for several different estimators, over a range of sample sizes n. The lines are average estimates
taken over 1000 independent realizations, and the vertical bars indicate ± one standard deviation of
the estimate. The actual value of H is indicated by a solid gray horizontal line. MM and JK are the
Miller–Maddow and Jack-knife corrected MLEs. BUB−, BUB.o, and BUB+ are the BUB estimators with
their m parameter set to a naive m̂, oracle m = 1024, and twice the oracle m. CAE is the coverage-adjusted
estimator. (Right) The corresponding root mean-squared error (RMSE). Bias dominates most estimates.
For the uniform distribution, CAE and BUB.o have relatively small biases and perform very well for
sample sizes as small as several hundred. For the Zipf case, the CAE estimator performs nearly as well

as the oracle BUB.o for sample sizes larger than 500.

This may reflect the nature of the stimulus in the Field L case. For the V1 data, the dependence
is short, with the fitted VLMC looking only 3 time periods (48ms) into the past.

Samples of length n were generated from the stationary distribution of the fitted VLMCs.
We subdivided each sample into non-overlapping words of length T . Figure 2 shows this for
the Field L model with T = 10. We tried two different word lengths for each model. The word
lengths and entropies are shown in Table II. We then computed each estimator’s estimate of
entropy on the words and divided by the word length to get an estimate of the entropy rate of
the word.
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Figure 4. The two distributions considered here have infinite support, with m =∞. (Left) The estimated
entropy for several different estimators, over a range of sample sizes n. The lines are average estimates
taken over 1000 independent realizations, and the vertical bars indicate ± one standard deviation of
the estimate. The actual value of H is indicated by a solid gray horizontal line. MM and JK are the
Miller–Maddow and Jack-knife corrected MLEs. BUB−, BUB.o, and BUB+ are the BUB estimators with
their m parameter set to a naive m̂, oracle m =
2H �, and twice the oracle m. CAE is the coverage- adjusted
estimator. (Right) The corresponding root mean-squared error (RMSE). Results are very similar to those

in the previous figure, the CAE estimator performs nearly as well as the oracle BUB.o.

We treat m as unknown in this example and did not include the oracle BUB.o in the experiment.
We used the maximum possible value of m, i.e. |X| for BUB+. In the case of Field L with T = 10,
this is 1024. The other values are shown in Table II.

4.3. Results

4.3.1. Standard models. The results are plotted in Figures 3 and 4. It is surprising that good
estimates can be obtained with just a few observations. Estimating m from its empirical value
marginally improves MM over the MLE. The naive BUB−, which also uses the empirical value
of m, performs about the same as JK.
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Figure 5. (Left) The estimated entropy rate for several different estimators. Samples of size n are drawn
from a stationary VLMC used to model neuronal data from Field L of an avian auditory system. A
single sample corresponds to 1ms of the recording time. We followed the ‘direct method’ and divided
each sample sequence into words of length T . In the top row, the word length is T = 10 and the
maximum number of words |X| is 1024. In the bottom row, T = 15 and |X| = 32 768. The lines are
average estimates taken over 1000 independent realizations, and the vertical bars indicate ± one stan-
dard deviation of the estimate. The actual value of H/T is indicated by a solid gray horizontal line.
MM and JK are the Miller–Maddow and Jack-knife corrected MLEs. BUB− and BUB+ are the BUB
estimators with their m parameter set to a naive m̂ and the maximum possible number of words |X|:
1024 for the top row and 32 768 for the bottom. CAE is the coverage-adjusted estimator. (Right) The
corresponding root mean-squared error (RMSE). The BUB+ estimator has a considerably large bias
in both cases. The CAE estimator has a moderate balance of bias and variance and shows a visible

improvement over all other estimators in the larger (T = 15) word case.

Bias apparently dominates the error of most estimators. The CAE estimator trades away bias
for a moderate amount of variance. The RMSE results for the four distributions are very similar.
The CAE estimator performs consistently well, even for smaller sample sizes, and is competitive
with the oracle BUB.o estimator. The Zipf distribution example seems to be the toughest case for
the CAE estimator, but it still performs relatively well for sample sizes of at least 1000.
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Figure 6. (Left) The estimated entropy rate for several different estimators. The samples of size n are
drawn from a stationary VLMC used to model neuronal data from V1 of the primate visual system. A
single sample corresponds to 16ms of the recording time. We followed the ‘direct method’ and divided
each sample sequence into words of length T . In the top row, the word length is T = 5 and the maximum
number of words |X| is 7776. In the bottom row, T = 6 and |X| = 46 656. The lines are average estimates
taken over 1000 independent realizations, and the vertical bars indicate ± one standard deviation of the
estimate. The actual value of H/T is indicated by a solid gray horizontal line. MM and JK are the
Miller–Maddow and Jack-knife corrected MLEs. BUB− and BUB+ are the BUB estimators with their m
parameter set to a naive m̂ and the maximum possible number of words 7776 for the top row and 46 656
for the bottom. CAE is the coverage-adjusted estimator. (Right) The corresponding root mean-squared
error (RMSE). The CAE estimator has the smallest bias and performs much better than the other estimators

across all sample sizes.

4.3.2. Neuronal data. The results are presented in Figures 5 and 6. The effect of the dependence
on the sample sequences is not clear, but all the estimators seem to be converging to the truth.
CAE consistently performs well for both V1 and Field L, and really shines in the V1 example.
However, for Field L, there is not much difference between the estimators, except for BUB+.

BUB+ uses m equal to the maximum number of words |X| and performs terribly because the
data are so sparse. The maximum entropy corresponding to |X| is much larger than the actual
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entropy. In the Field L case, the maximum entropies are 10 and 15, while the actual entropies
are 1.51 and 2.26. In the V1 case, the maximum entropies are 12.9 and 15.5, while the actual
entropies are 8.32 and 9.95. This may be the reason that the BUB+ estimator has such a large
positive bias in both cases, because the estimator is designed to approximately minimize a balance
between upper bounds on worst case bias and variance.

4.4. Summary

The CAE is a good choice for situations where m is unknown and/or infinite. In these situations,
the use of an estimator which requires specification of m is disadvantageous because a poor
estimate (or upper-bound) of m, or the ‘effective’ m in the infinite case, leads to further error in the
estimate. BUB.o, which used the oracle m, performed well in most cases. However, it is typically
not available in practice, because m is usually unknown.

The Miller–Maddow corrected MLE, which used the empirical value of m, improved on the
MLE only marginally. BUB−, which is BUB with the empirical value of m, performed better than
the MLE. It appeared to work in some cases, but not others. For BUB+, where we overestimated
or upper-bounded m (by doubling the oracle m, or using the maximal |X|), the bias and RMSE
increased significantly over BUB.o for small sample sizes. It appeared to work in some cases,
but not others—always alternating with BUB−. In the case of the neuronal data models, BUB+
performed very poorly. In situations like this, even though an upper bound on m is known, it can
be much larger than the ‘effective’ m, and result in a gross error.

5. CONCLUSIONS

Our study has emphasized the value of viewing entropy estimation as a problem of sampling from
a population, here a population of words made up of spike train sequence patterns. The CAE
performed very well in our simulation study and is very easy to compute. When the word length
m is known, the BUB estimator can perform better. In practice, however, m is usually unknown
and, as seen in V1 and Field L examples, assuming an upper bound on it can result in a large
error. The CAE therefore appears to us to be a safer choice.

Other estimates of the probabilities of observed words, such as the profile-based estimator
proposed by Orlitsky et al. [27], might be used in place of P̃ in the coverage-adjusted entropy
estimator, but that is beyond the scope of this article.

The V1 and Field L examples have substantial dependence structure, yet methods derived under
the i.i.d. assumption continue to perform well. It may be shown that both the direct method and
the CAE remain consistent under the relatively weak assumption of stationarity and ergodicity, but
the rate of convergence will depend on mixing conditions. On the other hand, in the non-stationary
case, these methods become inconsistent. Stationarity is, therefore, a very important assumption.
We intend to discuss these issues at greater length in a separate paper.

As is clear from our simulation study, the dominant source of error in estimating entropy is
often bias, rather than variance, which is typically not captured from computed standard errors.
An important problem for future investigation would therefore involve data-driven estimation of
bias in the case of unknown or infinite m.
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APPENDIX A

A.1. Proofs

We first prove Theorem 2. The proof builds on the following application of a standard concentration
technique.

Lemma 1
Ĉ → 1 almost surely.

Proof
Consider the number of singletons f1 as a function of xn1 = (x1, . . . , xn). Modifying a single
coordinate of xn1 changes the number of singletons by at most 2 because the number of words
affected by such a change is at most 2. Hence, Ĉ = 1 − f1/n changes by at most 2/n. Using
McDiarmid’s method of bounded differences, i.e. the Hoeffding–Azuma Inequality, gives

P(|Ĉ − EĈ |>�)�2e−(1/2)n�2 (A1)

and, by consequence of the Borel–Cantelli Lemma, |C − EĈ | → 0 almost surely. To show that
EĈ → 1, we note that 1�(1 − pk)n−1 → 0 for all pk>0 and

|1 − EĈ | = E
1

n

∑
k
1{nk = 1} (A2)

= ∑
k
pk(1 − pk)

n−1 → 0 (A3)

as n → ∞ by the Bounded Convergence Theorem. �

Proof of Proposition 1
The bias is

EĈ − P(Xn+1 ∈ S) = P(Xn+1 /∈ S) − E(1 − Ĉ) (A4)

= ∑
k
pk(1 − pk)

n − ∑
k
pk(1 − pk)

n−1 (A5)

= −∑
k
p2k (1 − pk)

n−1 (A6)

This quantity is trivially non-positive, and a little bit of calculus shows that the bias is maximized
by the uniform distribution pk = 1/n:∑

k
p2k (1 − pk)

n−1 �
∑
k
pk max

0�x�1
x(1 − x)n−1 (A7)

= max
0�x�1

x(1 − x)n−1 (A8)

= (1 − 1/n)n−1/n (A9)
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The variance bound can be deduced from equation (A1), because Var Ĉ = ∫ ∞
0 P(|Ĉ−EĈ |2>x) dx

and (A1) implies ∫ ∞

0
P(|Ĉ − EĈ |2>x) dx�

∫ ∞

0
2e−(1/2)nx dx = 4/n (A10)

Proof of Theorem 2
From (A1) we conclude that Ĉ=EĈ+OP(n−1/2). So it suffices to show that EĈ=1+O(1/(log n)q).
Let �n = 1/

√
n. We split the summation in (A3):

|1 − EĈ | = ∑
k:pk��n

pk(1 − pk)
n−1 + ∑

k:pk>�n
pk(1 − pk)

n−1 (A11)

Using Lemma 2 below, the first term on the right side is∑
k:pk��n

pk(1 − pk)
n−1�

∑
k:pk��n

pk = O(1/(log n)q) (A12)

The second term is ∑
k:pk>�n

pk(1 − pk)
n−1 � (1 − �n)

n−1 ∑
k:pk>�n

pk (A13)

� (1 − �n)
n−1 (A14)

� exp(−(n − 1)/
√
n) (A15)

by the well-known inequality 1 + x�ex . �

Lemma 2 (Wyner and Foster [20])

∑
k:pk��

pk�
∑

k pk | log pk |q
log(1/�)q

Proof
Since log(1/x) is a decreasing function,

∑
k:pk��

pk

∣∣∣∣log 1

pk

∣∣∣∣q �
∑

k:pk��
pk

∣∣∣∣log 1

�

∣∣∣∣q (A16)

and then we collect the log(1/�)q term to the left side to derive the claim. �

Proof of Theorem 1
Using the result of Wyner and Foster that under the above assumptions, Ĥ = H + OP(1/ log n),
it suffices to show |H̃ − Ĥ | = OP(1/ log n). All summations below will only be over k, such that
p̂k>0 or pk>0. It is easily verified that

H̃ − Ĥ = −∑
k

p̃k log p̃k
1 − (1 − p̃k)n

− p̂k log p̂k (A17)
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= −∑
k

[
Ĉ

1 − (1 − p̃k)n
− 1

]
p̂k log p̂k︸ ︷︷ ︸

Dn

(A18)

−∑
k

Ĉ p̂k log Ĉ

1 − (1 − p̃k)n︸ ︷︷ ︸
Rn

(A19)

To bound Rn , we will use the OP(1/(log n)2) rate of Ĉ from Theorem 2. Note that Ĉ/n�Ĉ p̂k= p̃k�1
and by the decreasing nature of 1/[1 − (1 − p̃k)n]

|Rn|� | log Ĉ |
1 − (1 − Ĉ/n)n

∑
k
p̂k = | log Ĉ |

1 − (1 − Ĉ/n)n
(A20)

By Lemma 1, Ĉ → 1 almost surely and since xn → 1 implies (1− xn/n)n → e−1, the right side is
∼| log Ĉ |/(1 − e−1) = OP(1/(log n)2). As for Dn ,

|Dn|�−∑
k

|Ĉ − 1| + (1 − p̃k)n

1 − (1 − p̃k)n
p̂k log p̂k (A21)

and since p̃k�Ĉ/n whenever p̃k>0,

−∑
k

|Ĉ − 1|
1 − (1 − p̃k)n

p̂k log p̂k � |Ĉ − 1|
1 − (1 − Ĉ/n)n

Ĥ (A22)

∼ |Ĉ − 1|
1 − e−1

Ĥ (A23)

= OP(1/(log n)2) (A24)

because Ĥ is consistent. The remaining part of Dn will require a bit more work and we will split
it according to the size of p̂k . Let �n = log n/n. Then

−∑
k

(1 − p̃k)n

1 − (1 − p̃k)n
p̂k log p̂k = − ∑

k: p̂k��n

(1 − p̃k)n

1 − (1 − p̃k)n
p̂k log p̂k

− ∑
k: p̂k>�n

(1 − p̃k)n

1 − (1 − p̃k)n
p̂k log p̂k (A25)

Similarly to our previous argument, (1 − p̃k)n/1 − (1 − p̃k)n is decreasing in p̃k . So the second
summation on the right side is

− ∑
k: p̂k>�n

(1 − p̃k)n

1 − (1 − p̃k)n
p̂k log p̂k � (1 − �n)n

1 − (1 − �n)n
Ĥ (A26)

= OP(1/n) (A27)
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For the remaining summation, we use the fact that p̃k�Ĉ/n and the monotonicity argument once
more:

− ∑
k: p̂k��n

(1 − p̃k)n

1 − (1 − p̃k)n
p̂k log p̂k�− (1 − Ĉ/n)n

1 − (1 − Ĉ/n)n

∑
k: p̂k��n

p̂k log p̂k (A28)

By the consistency of Ĉ , the leading term converges to the constant e−1/(1 − e−1) and can be
ignored. Since − log p̂k� log n,

− ∑
k: p̂k��n

p̂k log p̂k� log n
∑

k: p̂k��n

p̂k (A29)

We split the summation once last time, but according to the size of pk :

log n
∑

k: p̂k��n

p̂k � log n

[ ∑
k:pk>1/

√
n

�n + ∑
k:pk�1/

√
n

p̂k

]
(A30)

� (log n)2√
n

+ log n
∑

k:pk�1/
√
n

p̂k (A31)

where we have used the fact that |{k : pk>1/
√
n}|�√

n. Taking the expectation, applying Lemma 2
and Markov’s inequality shows that

= log n
∑

k:pk�1/
√
n

p̂k = OP(1/ log n) (A32)

The proof is complete because (log n)2/
√
n is also O(1/ log n). �
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