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Abstract

High Dimensional Estimation and Data Analysis:

Entropy and Regularized Regression

by

Vincent Quang Vu

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Chair

High-dimensional data are a frequent occurrence in many areas of application of statistics.

For example, the analysis of data from neuroscience often involves fundamentally high-

dimensional variables such as natural images or patterns of spiking in neural spike trains.

These applications are often concerned with the relationship between these variables and

another variate. What is the strength of the relationship? What is the nature of the rela-

tionship? This work is concerned with some of the statistical challenges in high-dimensional

data analysis that arise when answering these questions; it is grounded in applications to

data problems in neuroscience, and examines some challenges in entropy estimation and

regularized regression that arise there.

Professor Bin Yu
Dissertation Committee Chair
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Chapter 1

Introduction

High-dimensional data problems are a frequent occurrence in many areas of ap-

plication of statistics. For example, the analysis of data from neuroscience often involves

fundamentally high-dimensional variables such as natural images or patterns of spiking

in neural spike trains. The problem is high-dimensional when a variable lives in a high-

dimensional space, say Rp, but the number of observations, n, is of the same or a smaller

order of magnitude, i.e. p ! n. This poses many challenges for statistical estimation.

Many applied problems are concerned with the relationship between variables. There are

two natural questions in the investigation:

• What is the strength of the relationship?

• What is the nature of the relationship?

This work is concerned with some of the methodological and theoretical challenges in high-

dimensional data analysis that arise when answering these questions; it is grounded in

applications to data problems in neuroscience.
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The first question can be answered within the framework of measuring statistical

dependence. Entropy and mutual information are general measures of statistical variability

and dependence. They originated in the work of Shannon (1948), where he proposed their

use in his mathematical theory of communication systems. There entropy and mutual

information have concrete meaning in the engineering domain in terms of data compression

and transmission. However, they have also found application in a variety of areas outside

of engineering such as ecology and neuroscience. In such applications, these quantities are

usually calculated from data. The application of these measures to data analysis problems

involves the fundamental problem of statistical estimation. Part I (Chapters 2 and 3) of this

dissertation deals with this problem at a general theoretical level and also in the context of

analyzing neuronal data.

Chapter 2 is concerned with the general problem of non-parametric entropy es-

timation in a high-dimensional setting motivated by entropy calculations for neural spike

trains. The idealized setup in that chapter is useful for understanding the general difficulty

of entropy estimation and also understanding when and why certain methods should work.

In practice, the situation is never ideal. In particular when the data is collected from an

experiment where the phenomenon of interest is fundamentally of dynamic, time-varying

nature, the issue of stationary versus non-stationary becomes very important. Since mutual

information is a difference of entropies, the results in that chapter are also applicable to mu-

tual information estimation. Chapter 3 specifically examines mutual information estimates

in the context of time dependent experiments that are common in neuroscience. There the

meaning of the estimate changes depending on whether or not there is stationarity.
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Regression is a natural framework for answering the second question, “What is

the nature of the relationship?” In the most basic case, the problem is to estimate the

conditional mean function E(Y |X = x). The natural interpretation is that it provides

the best prediction of the response Y given the predictor X = x, in the least squared

error sense. At the coarsest level, the different methodology differ in the basic assumptions

about the nature of the conditional mean function. Even with the strictest assumption that

E(Y |X = x) is a linear function of x, regression in the high-dimensional setting can be very

difficult. The problem is ill-posed when the dimension of X is comparable to or exceeds the

sample size—regression must be regularized for any hope of success.

Part II (Chapters 4 and 5) addresses some specific aspects of regularized regression

in high dimensions. Chapter 4 describes state-of-the-art results in a long investigation into

neural coding in area V1 of the visual cortex of the human brain. There we describe a

progression of technique that begins with regularized linear models and culminates with

non-linear sparse models in predicting V1 fMRI response to novel natural image stimuli.

The goal of it all is to answer the question: what is the nature of the relationship between

natural image stimuli and V1 functional MRI (magnetic resonance imaging) response?

Chapter 5 contains some mathematical theory on the use of generalized ridge

regression for prediction. The chapter attempts to address the problem of specification of

the penalty/constraint (or prior for Bayesians) in generalized ridge regression. This problem

was motivated by preliminary work on the data analysis problem in Chapter 4, where

linear models were fit using a variant of ridge regression known as power ridge regression

(Hoerl and Kennard, 1970; Goldstein and Smith, 1974). In preliminary investigations it
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was found that the choice of the power parameter q in power ridge had a drastic effect on

prediction performance. Chapter 5 abstracts the problem and presents a general framework

for understanding the effect of penalty/constraint misspecification. The results are very

mathematical, and further investigation of the results with concrete examples is planned.
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Part I

Entropy
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Chapter 2

Coverage Adjusted Entropy

Estimation

2.1 Introduction

The problem of “neural coding” is to elucidate the representation and transforma-

tion of information in the nervous system (Perkel and Bullock, 1968). An appealing way to

attack neural coding is to take the otherwise vague notion of “information” to be defined in

Shannon’s sense, in terms of entropy (Shannon, 1948). This project began in the early days

of cybernetics (Wiener, 1948; MacKay and McCulloch, 1952), received considerable impetus

from work summarized in the book Spikes: Exploring the Neural Code (Rieke et al., 1997),

and continues to be advanced by many investigators. In most of this research, the findings

concern the mutual information between a stimulus and a neuronal spike train response.

For a succinct overview see (Borst and Theunissen, 1999). The mutual information, how-
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ever, is the difference of marginal and expected conditional entropies; to compute it from

data one is faced with the basic statistical problem of estimating the entropy1

H := −
∑

x∈X
P (x) log P (x) (2.1.1)

of an unknown discrete probability distribution P over a possibly infinite space X , the data

being conceived as random variables X1, . . . , Xn with Xi distributed according to P . An

apparent method of estimating the entropy is to apply the formula after estimating P (x)

for all x ∈ X , but estimating a discrete probability distribution is, in general, a difficult

nonparametric problem.

2.2 Background

In linguistic applications, X could be the set of words in a language, with P

specifying their frequency of occurrence. For neuronal data, Xi often represents the number

of spikes (action potentials) occurring during the ith time bin. Alternatively, when a fine

resolution of time is used (such as dt = 1 millisecond), the occurrence of spikes is indicated

by a binary sequence, and Xi becomes the pattern, or “word,” made up of 0-1 words or

“letters,” for the ith word. This is described in Figure 2.1, and it is the basis for the

widely-used “direct method” proposed by Strong et al. (1998). The number of possible

words m := |{x ∈ X : P (x) > 0}| is usually unknown and possibly infinite. In the example

in Figure 2.1, the maximum number of words is the total number of 0-1 strings of length

L. For L = 10 this number is 1024; for L = 20 it is well over one million, and in general

there is an exponential explosion with increasing L. Furthermore, the phenomenon under
1Unless otherwise stated, we take all logarithms to be base 2 and define 0 log 0 = 0.
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Figure 2.1: The top row depicts 45 milliseconds of a hypothetical spike train. The ticks on
the time axis demarcate dt = 1 millisecond bins (intervals). The spike train is discretized
into a sequence of counts. Each count is the number of spikes that fall within a single time
bin. Subdividing this sequence into words of length L = 10 leads to the words shown at the
bottom. The words X1, X2, . . . take values in the space X = {0, 1}10 consisting of all 0-1
strings of length 10.

investigation will often involve fine time resolution, necessitating a small bin size dt and

thus a large L. For large L, the estimation of P (x) is likely to be challenging.

We note that Strong et al. calculated the entropy rate. Let {Wt : t = 1, 2, . . .}

be a discretized (according to dt) spike train as in the example in Figure 2.1. If {Wt} is a

stationary process, the entropy of a word, say X1 = (W1, . . . ,WL), divided by its length L

is non-increasing in L and has a limit as L →∞, i.e.

lim
L→∞

1
L

H(X1) = lim
L→∞

1
L

H(W1, . . . ,WL) =: H ′ (2.2.1)

exists (Cover and Thomas, 1991). This is the entropy rate of {Wt}. The word entropy is used

to estimate the entropy rate. If {Wt} has finite range dependence, then the above entropy

factors into a sum of conditional entropies and a single marginal entropy. Generally, the

word length is chosen to be large enough so that H(W1, . . . ,WL)/L is a close approximation

to H ′, but not so large that there are not enough words to estimate H(W1, . . . ,WL). Strong
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et al. proposed that the entropy rate estimate be extrapolated from estimates of the word

entropy over a range of word lengths. We do not address this extrapolation, but rather

focus on the problem of estimating the entropy of a word.

In the most basic case the observations X1, . . . , Xn are assumed to be independent

and identically distributed (i.i.d.). Without loss of generality, we assume that X ⊆ N and

that the words 2 are labeled 1, 2, . . .. The seemingly most natural estimate is the empirical

plug-in estimator

Ĥ := −
∑

x

P̂ (x) log P̂ (x), (2.2.2)

which replaces the unknown probabilities in Equation (2.1.1) with the empirical probabil-

ities P̂ (x) := nx/n, that is the observed proportion nx/n of occurrences of the word x

in X1, . . . , Xn. The empirical plug-in estimator is often called the “naive” estimate or the

“MLE”—after the fact that P̂ is the maximum likelihood estimate of P . We will use “MLE”

and “empirical plug-in” interchangeably. From Jensen’s Inequality it is readily seen that

the MLE is negatively biased unless P is trivial. In fact no unbiased estimate of entropy

exists (see Paninski (2003) for an easy proof).

In the finite m case, Basharin (1959) showed that the MLE is biased, consistent,

and asymptotically normal with variance equal to the entropy variance Var[log P (X1)].

Miller (1955) previously studied the bias independently and provided the formula

EĤ −H = −m− 1
2n

+O
(
1/n2

)
. (2.2.3)

The bias dominates the mean squared error of the estimator (Antos and Kontoyiannis,
2The information theory literature traditionally refers to X as an alphabet and its elements as symbols.

It is natural to call a tuple of symbols a word, but the problem of estimating the entropy of the L-tuple
word reduces to that of estimating the entropy in an enlarged space (of L-tuples).
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2001), and has been the focus of recent studies (Victor, 2000; Paninski, 2003).

The original “direct method” advocated an ad-hoc strategy of bias reduction based

on a subsampling extrapolation (Strong et al., 1998). A more principled correction based on

the jackknife technique was proposed earlier by Zahl (1977). The formula Equation (2.2.3)

suggests a bias correction of adding (m− 1)/(2n) to the MLE. This is known as the Miller–

Maddow correction. Unfortunately, it is an asymptotic correction that depends on the

unknown parameter m. Paninski (2003) observed that both the MLE and Miller–Maddow

estimates fall into a class of estimators that are linear in the frequencies of observed word

counts fj = |{nx : nx = j}|. He proposed an estimate, “Best Upper Bounds” (BUB), based

on numerically minimizing an upper-bound on the bias and variance of such estimates when

m is assumed finite and known. We note that in the case that m is unknown, it can be

replaced by an upper-bound, but the performance of the estimator is degraded.

Bayesian estimators have also been proposed for the finite m case by Wolpert and

Wolf (1995). Their approach is to compute the posterior distribution of entropy based on

a symmetric Dirichlet prior on P . Nemenman et al. (2004) found that the Dirichlet prior

on P induces a highly concentrated prior on entropy. They argued that this property is

undesirable and proposed an estimator based on a Dirichlet mixture prior with the goal of

flattening the induced prior distribution on entropy. Their estimate requires a numerical

integration and also the unknown parameter m, or at least an upper-bound. The estimation

of m is even more difficult than the estimation of entropy (Antos and Kontoyiannis, 2001),

because it corresponds to estimating lima↓0
∑

x[P (x)]a.

In the infinite m case, Antos and Kontoyiannis (2001) proved consistency of the
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empirical plug-in estimator and showed that there is no universal rate of convergence for

any estimator. However, Wyner and Foster (2003) have shown that the best rate (to first

order) for the class of distributions with with finite entropy variance or equivalently finite

log-likelihood second moment

∑

x

P (x)(log P (x))2 < ∞

is OP (1/ log n). This rate is achieved by the empirical plug-in estimate as well as an

estimator based on match lengths. Despite the fact that the empirical plug-in estimator is

asymptotically optimal, its finite sample performance leaves much to be desired.

Chao and Shen (2003) proposed a coverage adjusted entropy estimator intended

for the case when there are potentially unseen words in the sample. This is always the

case when m is relatively large or infinite. Intuitively, low probability words are typically

absent from most sequences, i.e. the expected sample coverage is < 1, but in total, the

missing words can have a large contribution to H. The estimator is based on plug-in of a

coverage adjusted version of the empirical probability into the Horvitz–Thompson (Horvitz

and Thompson, 1952) estimator of a population total. They presented simulation results

showing that the estimator seemed to perform quite well, especially in the small sample size

regime, when compared to the usual empirical plug-in and several bias corrected variants.

The estimator does not require knowledge of m, but they assumed a finite m. We prove

here (Theorem 2.2) that the coverage adjusted estimator also works in the infinite m case.

Chao and Shen also provided approximate confidence intervals for the coverage adjusted

estimate, however they are asymptotic and depend on the assumption of finite m.

The problems of entropy estimation and estimation of the distribution P are dis-
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tinct. Entropy estimation should be no harder than estimation of P , since H is a functional

of P . However, several of the entropy estimators considered here depend either implicitly or

explicitly on estimating P . BUB is linear in the frequency of observed word counts fj , and

those are 1-to-1 with the empirical distribution P̂ up to labeling. In general, any symmetric

estimator is a function of P̂ . The only estimators mentioned above that does not depend

on P̂ is the match length estimator. For the coverage adjusted estimator, the dependence

on estimating P is only through estimating P (k) for observed words k.

2.3 Theory

Unobserved words—those that do not appear in the sample, but have non-zero

probability–can have a great impact on entropy estimation. However, these effects can

be mitigated with two types of corrections: Horvitz–Thompson adjustment and coverage

adjustment of the probability estimate. Section 2.3.1 contains an exposition of some of

these effects. The adjustments are described in Section 2.3.2 along with the definition of

the resulting coverage adjusted entropy estimator. A key ingredient of the estimator is a

coverage adjusted probability estimate. We provide a novel derivation from the viewpoint

of regularization in Section 2.3.3. Lastly, Section 2.3.4 concludes the theoretical study with

our rate of convergence results.

Throughout this section we assume that X1, . . . , Xn is an i.i.d. sequence from the

distribution P on the countable set X . Without loss of generality, we assume that the

P (k) > 0 for all k ∈ X and write pk for P (k) = P(Xi = k). As before, m := |X | and
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possibly m = ∞. Let

nk :=
n∑

i=1

1{Xi=k}

be the number of times that the word k appears in the sequence X1, . . . , Xn.

2.3.1 The Unobserved Word Problem

The set of observed words S is the set of words that appear at least once in the

sequence X1, . . . , Xn, i.e.

S := {k : nk > 0}.

The complement of S, i.e. X\S, is the set of unobserved words. There is always a non-zero

probability of unobserved words, and if m > n or m = ∞ then there are always unobserved

words. In this section we describe two effects of the unobserved words pertaining to entropy

estimation.

Given the set of observed words S, the entropy of P can be written as the sum of

two parts:

H = −
∑

k∈S

pk log pk −
∑

k/∈S

pk log pk. (2.3.1)

One part is the contribution of observed words; the other is the contribution of unobserved

words. Suppose for a moment that pk is known exactly for k ∈ S, but unknown for k /∈ S.

Then we could try to estimate the entropy by

−
∑

k∈S

pk log pk, (2.3.2)

but there would be an error in the estimate unless the sample coverage

C :=
∑

k∈S

pk
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is identically 1. The error is due to the contribution of unobserved words and thus the

unobserved summands:

−
∑

k/∈S

pk log pk.

This error could be far from negligible, and its size depends on the pk for k /∈ S. However,

there is an adjustment that can be made so that the adjusted version of Equation (2.3.2) is

an unbiased estimate of H. This adjustment comes from the Horvitz–Thompson estimate

of a population total, and we will review it in Section 2.3.2.

Unfortunately, pk is unknown for both k ∈ S and k /∈ S. A common estimate for

pk is the MLE/empirical p̂k := nk/n. Plugging this estimate into Equation (2.3.2) gives the

MLE/empirical plug-in estimate of entropy:

Ĥ := −
∑

k

p̂k log p̂k = −
∑

k∈S

p̂k log p̂k,

because p̂k = 0 for all k /∈ S. If the sample coverage C is < 1, then this is a degenerate

estimate because
∑

k∈S p̂k = 1 and so p̂k = 0 for all k /∈ S. Thus, we could shrink the

estimate of pk on S toward zero so that its sum over S is < 1. This is the main idea behind

the coverage adjusted probability estimate, however we will derive it from the viewpoint of

regularization in Section 2.3.3.

We have just seen that unobserved words can have two negative effects on entropy

estimation: unobserved summands and error-contaminated summands. The “size,” or non-

coverage, of the set of unobserved words can be measured by 1 minus the sample coverage:

1− C =
∑

k/∈S

pk = P(Xn+1 /∈ S|S).

Thus, it is also the conditional probability that a future observation Xn+1 is not a previously
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observed word. So the average non-coverage is

E(1− C) = P(Xn+1 /∈ S) =
∑

k

pk(1− pk)n.

and in general E(1 − C) > 0. Its rate of convergence to 0, as n → ∞, depends on P and

can be very slow. (See the corollary to Theorem 2.3 below). It is necessary to understand

how to mitigate the effects of unobserved words on entropy estimation.

2.3.2 Coverage Adjusted Entropy Estimator

Chao and Shen (2003) observed that entropy can be thought of as the total
∑

k yk

of an unknown population consisting of elements yk = −pk log pk. For the general problem

of estimating a population total, the Horvitz–Thompson estimator,

∑

k∈S

yk

P(k ∈ S)
=

∑

k

yk

P(k ∈ S)
1{k∈S}, (2.3.3)

provides an unbiased estimate of
∑

k yk, under the assumption that the inclusion proba-

bilities P(k ∈ S) and yk are known for k ∈ S. For the i.i.d. sequence X1, . . . , Xn the

probability that word k is unobserved in the sample is (1 − pk)n. So the inclusion proba-

bility is 1 − (1 − pk)n. Then the Horvitz–Thompson adjusted version of Equation (2.3.2)

is
∑

k∈S

−pk log pk

1− (1− pk)n
.

All that remains is to estimate pk for k ∈ S. The empirical p̂k can be plugged into the

above formula, however, as we stated in the previous section, it is a degenerate estimate

when C < 1 because it assigns 0 probability to k /∈ S and, thus, tends to overestimates the

inclusion probability. We will discuss this further in Section 2.3.3.
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In a related problem, Ashbridge and Goudie (2000) considered finite populations

with elements yk = 1, so that Equation (2.3.3) becomes an estimate of the population

size. They found that P̂ did not work well and suggested using instead a coverage adjusted

estimate P̃ := ĈP̂ , where Ĉ is an estimate of C. Chao and Shen recognized this and

proposed using the Good–Turing coverage estimator (Good, 1953; Robbins, 1968):

Ĉ := 1− f1

n
,

where f1 :=
∑

k 1{nk=1} is the number of singletons in the sequence X1, . . . , Xn. This leads

to the coverage adjusted entropy estimator:

H̃ := −
∑

k

p̃k log p̃k

1− (1− p̃k)n
,

where p̃k := Ĉp̂k. Chao and Shen gave an argument for CP̂ based on a conditioning

property of the multinomial distribution. In the next section we give a different derivation

from the perspective of regularization of an empirical risk, and give upper-bounds for the

bias and variance of Ĉ.

2.3.3 Regularized Probability Estimation

Consider the problem of estimating P under the entropy loss L(q, x) = − log Q(x),

for Q satisfying Q(k) = qk ≥ 0 and
∑

qk = 1. This loss function is closely aligned with the

problem of entropy estimation because the risk, i.e. the expected loss on a future observation,

R(Q) := −E log Q(Xn+1) (2.3.4)
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is uniquely minimized by Q = P and its optimal value is the entropy of P . The MLE P̂

minimizes the empirical version of the risk

R̂(Q) := − 1
n

n∑

i=1

log Q(Xi). (2.3.5)

As stated previously in Section 2.3.1, this is a degenerate estimate when there are unob-

served words. More precisely, if the expected coverage EC < 1 (which is true in general),

then R(P̂ ) = ∞.

Analogously to Equation (2.3.1), the expectation in Equation (2.3.4) can be split

into two parts by conditioning on whether Xn+1 is a previously observed word or not:

R(Q) =− E[log Q(Xn+1)|Xn+1 ∈ S] P(Xn+1 ∈ S)

− E[log Q(Xn+1)|Xn+1 /∈ S] P(Xn+1 /∈ S).

(2.3.6)

Since P(Xn+1 ∈ S) does not depend on Q, minimizing Equation (2.3.6) with respect to Q

is equivalent to minimizing

− E[log Q(Xn+1)|Xn+1 ∈ S]− λ∗E[log Q(Xn+1)|Xn+1 /∈ S], (2.3.7)

where λ∗ = P(Xn+1 /∈ S)/ P(Xn+1 ∈ S). We cannot distinguish the probabilities of the

unobserved words on the basis of the sample. So consider estimates Q which place constant

probability on x /∈ S. Equivalently, these estimates treat the unobserved words as a single

class and so the risk reduces to the equivalent form:

−E[log Q(Xn+1)|Xn+1 ∈ S]− λ∗E log

[
1−

∑

k∈S

Q(k)

]
.

The above expectations only involve evaluating Q at observed words. Thus, Equation (2.3.5)

is more natural as an estimate of −E[log Q(Xn+1)|Xn+1 ∈ S], than as an estimate of R(Q).



18

If we let λ be any estimate of the odds ratio λ∗ = P(Xn+1 /∈ S)/ P(Xn+1 ∈ S), then we

arrive at the regularized empirical risk,

R̃(q;λ) := − 1
n

∑

i

log Q(Xi)− λ log

[
1−

∑

i

Q(Xi)

]
. (2.3.8)

This is the usual empirical risk with an additional penalty on the total mass assigned to

observed words. It can be verified that the minimizer, up to an equivalence, is (1 + λ)−1P̂ .

This estimate shrinks the MLE towards 0 by the amount (1 + λ)−1. Any Q which agrees

with (1+λ)−1P̂ on S is a minimizer of Equation (2.3.8). Note that (1+λ∗)−1 = P(Xn+1 ∈

S) = EC is the expected coverage, rather than the sample coverage C. Ĉ can be used

to estimate both EC and C, however it is actually better as an estimate of EC because

McAllester and Schapire (2000) have shown that Ĉ = C +OP (log n/
√

n), whereas we prove

in the appendix the following proposition.

Proposition 2.1.

0 ≥ E(Ĉ − C) = −
∑

k

p2
k(1− pk)n−1 ≥ (1− 1/n)n−1/n ∼ −e−1/n

and Var Ĉ ≤ 4/n.

So Ĉ is a 1/
√

n consistent estimate of EC. Using Ĉ to estimate EC = (1 + λ∗)−1,

we obtain the coverage adjusted probability estimate P̃ = ĈP̂ .

2.3.4 Convergence Rates

In the infinite m case, Antos and Kontoyiannis (2001) proved that the MLE is

universally consistent almost surely and in L2, provided that the entropy exists. However,

they also showed that there can be no universal rate of convergence for entropy estimation.
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Some additional restriction must be made beyond the existence of entropy in order to

obtain a rate of convergence. Wyner and Foster (2003) found that for the weakest natural

restriction,
∑

k pk(log pk)2 < ∞, the best rate of convergence, to first order, is OP (1/ log n).

They proved that the MLE and an estimator based on match lengths achieves this rate.

Our main theoretical result is that the coverage adjusted estimator also achieves this rate.

Theorem 2.2. Suppose that
∑

k pk(log pk)2 < ∞. Then as n →∞,

H̃ = H +OP (1/ log n) .

In the previous section we employed Ĉ = 1−f1/n, in the regularized empirical risk

Equation (2.3.8). As for the observed sample coverage, C = P(Xn+1 ∈ S|S), McAllester

and Schapire (2000) proved that Ĉ = P(Xn+1 ∈ S|S) + OP (log n/
√

n), regardless of the

underlying distribution. Our theorem below together with that of McAllester and Schapire

implies a rate of convergence on the total probability of unobserved words.

Theorem 2.3. Suppose that
∑

k pk| log pk|q < ∞. Then as n →∞, almost surely,

Ĉ = 1−O (1/(log n)q) .

Corollary 2.4. Suppose that
∑

k pk| log pk|q < ∞. Then as n →∞,

1− C = P(Xn+1 /∈ S|S) = OP (1/(log n)q) . (2.3.9)

Proof. This follows from the above theorem and McAllester and Schapire (2000, Theorem

3) which implies |Ĉ − P(Xn+1 ∈ S|S)| ≤ oP (1/(log n)q) because

0 ≤ P(Xn+1 /∈ S|S) ≤ |1− Ĉ|+ |Ĉ − P(Xn+1 ∈ S|S)|

and OP (1/(log n)q) + oP (1/(log n)q) = OP (1/(log n)q).
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The proofs of Theorem 2.2 and Theorem 2.3 are contained in Section 3.5. At the

time of writing, the only other entropy estimators proved to be consistent and asymptotically

first-order optimal in the finite entropy variance case that we are aware of are the MLE

and Wyner and Foster’s modified match length estimator. However, the OP (1/ log n) rate,

despite being optimal, is somewhat discouraging. It says that in the worst case we will need

an exponential number of samples to estimate the entropy. Furthermore, the asymptotics

are unable to distinguish the coverage adjusted estimator from the MLE, which has been

observed to be severely biased. In the next section we use simulations to study the small-

sample performance of the coverage adjusted estimator and the MLE, along with other

estimators. The results suggest that in this regime their performances are quite different.

2.4 Simulation Study

We conducted a large number of simulations under varying conditions to inves-

tigate the performance of the coverage adjusted estimator (CAE) and compare with four

other estimators.

• Empirical Plug-in (MLE): defined in Equation (2.2.2).

• Miller–Maddow corrected MLE (MM): based on the asymptotic bias formula pro-

vided by Miller (1955) and Basharin (1959). It is derived from Equation (2.2.3) by

estimating m by the number of distinct words observed m̂ =
∑

k 1{nk≥1} and adding

(m̂− 1)/(2n) to the MLE.

• Jackknife (JK): proposed by Zahl (1977). It is a bias-corrected version of the MLE
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obtained by averaging all n leave-one-out estimates.

• Best Upper Bounds (BUB): proposed by Paninski (2003). It is obtained by numerically

minimizing a worst case error bound for a certain class of linear estimators for a

distribution with known support size m.

The NSB estimator proposed by Nemenman et al. (2004) was not included in our simulation

comparison because of problems with the software and its computational cost. We also tried

their asymptotic formula for their estimator in the “infinite (or unknown)” m case:

ψ(1)/ ln(2)− 1 + 2 log n− ψ(n− m̂), (2.4.1)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function. However, we were also unable to get it

to work because it seemed to increase unboundedly with the sample size, even for m = ∞

cases.

There are two sets of experiments consisting of multiple trials. The first set of

experiments concern some simple, but popular model distributions. The second set of

experiments deal with neuronal data recorded from primate visual and avian auditory sys-

tems. It departs from the theoretical assumptions of Section 2.3 in that the observations

are dependent.

Chao and Shen (2003) also conducted a simulation study of the coverage adjusted

estimator for distributions with small m and showed that it performs reasonably well even

when there is a relatively large fraction of unobserved words. Their article also contains

examples from real data sets concerning diversity of species. The experiments presented

here are intended to complement their results and expand the scope.
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2.4.1 Practical Considerations

There were a few practical hurdles when performing these experiments. The first

is that the coverage adjusted estimator is undefined when the sample consists entirely of

singletons. In this case Ĉ = 0 and p̃ = 0. The probability of this event decays exponentially

fast with the sample size, so it is only an issue for relatively small samples. To deal with

this matter we replaced the denominator n in the definition of Ĉ with n + 1. This minor

modification does not affect the asymptotic behavior of the estimator, and allows it to be

defined for all cases.3

The BUB estimator assumes that the number of words m is finite and requires

that it be specified. m is usually unknown, but sometimes an upper-bound on m may be

assumed. To understand the effect of this choice we tried three different variants on the

BUB estimator’s m parameter:

• Understimate (BUB-): The naive m̂ as defined above for the Miller–Maddow corrected

MLE.

• Oracle value (BUB.o): The true m in the finite case and +2H, in the infinite case.

• Overestimate (BUB+): Twice the oracle value for the first set of experiments and the

maximum number of words |X | for the second set of neuronal data experiments.

Although the BUB estimator is undefined for the m infinite case, we still tried using it,

defining the m parameter of the oracle estimator to be +2H,. This is motivated by the

Asymptotic Equipartition Property (AEP) (Cover and Thomas, 1991), which roughly says
3Another variation is to add .5 to the numerator and 1 to the denominator.
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support (k =) pk H Var[log p(X)]
Uniform 1, . . . , 1024 1/1024 10 0

Zipf 1, . . . , 1024 k−1/
∑

k k−1 7.51 9.59
Poisson 1, . . . ,∞ 1024k/(k!e1024) 7.05 1.04

Geometric 1, . . . ,∞ (1023/1024)k−1/1024 11.4 2.08

Table 2.1: Standard distributions considered in the first set of experiments.

that, asymptotically, 2H is the effective support size of the distribution. There are no

theoretical guarantees for this heuristic use of the BUB estimator, but it did seem to work

in the simulation cases below. Again, this is an oracle value and not actually known in

practice. The implementation of the estimator was adapted from software provided by

Paninski (2003) and its numerical tuning parameters were left as default.

2.4.2 Experimental Setup

In each trial we sample from a single distribution and compute each estimator’s

estimate of the entropy. Trials are repeated, with 1,000 independent realizations.

Standard Models We consider the four discrete distributions shown in Table 2.1. The

uniform and truncated Zipf distributions have finite support (m = 1, 024), while the Poisson

and geometric have infinite support. The Zipf distribution is very popular and often used

to model linguistic data. It is sometimes referred to as a “power law.” We generated i.i.d.

samples of varying sample size (n) from each distribution and computed the respective

estimates. We also considered the distribution of distinct words in James Joyce’s novel

Ulysses. We found that results were very similar to that of the Zipf distribution and did

not include them here.
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Neuronal Data Here we consider two real neuronal data sets first presented in Theunis-

sen et al. (2001). A subset of the data are available from the Neural Prediction Challenge4.

We fit a variable length Markov chain (VLMC) to subsets of each data set and treated the

fitted models as the truth. Our goal was not to model the neuronal data exactly, but to

construct an example which reflects real neuronal data, including any inherent dependence.

This experiment departs from the assumption of independence for the theoretical results.

See Mächler and Bühlmann (2002) for a general overview of the VLMC methodology.

From the first data set, we extracted 10 repeated trials, recorded from a single

neuron in the Field L area of avian auditory system during natural song stimulation. The

recordings were discretized into dt = 1 millisecond bins and consist of sequences of 0’s and

1’s indicating the absence or presence of a spike. We concatenated the ten recordings before

fitting the VLMC (with state space {0, 1}). A complete description of the physiology and

other information theoretic calculations from the data can be found in Hsu et al. (2004).

The other data set contained several separate single neuron recording sequences

from the V1 area of primate visual system, during a dynamic natural image stimulation.

We used the longest contiguous sequence from one particular trial. This consisted of 3,449

spike counts, ranging from 0 to 5. The counts are number of spikes occurring during

consecutive dt = 16 millisecond periods. (For the V1 data, the state space of the VLMC

is {0, 1, 2, 3, 4, 5}). The resulting fits for both data sets are shown in Table 2.2. Note that

for each VLMC, H/L is nearly the same for both choices of word length (cf. the remarks

under equation Equation (2.3.3) in Section 2.2.
4http://neuralprediction.berkeley.edu
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VLMC depth (msec) X word length L |X | H H/L
Field L 232 (232) {0, 1}10 10 1,024 1.51 0.151

232 (232) {0, 1}15 15 32,768 2.26 0.150
V1 3 (48) {0, 1, . . . , 5}5 5 7,776 8.32 1.66

3 (48) {0, 1, . . . , 5}6 6 46,656 9.95 1.66

Table 2.2: Fitted VLMC models. Entropy (H) was computed by Monte Carlo with 106

samples from the stationary distribution. H/L is the entropy of the word divided by its
length.

The (maximum) depth of the VLMC is a measure of time dependence in the data.

For the Field L data, the dependence is long, with the VLMC looking 232 time periods (232

msec) into the past. This may reflect the nature of the stimulus in the Field L case. For

the V1 data, the dependence is short with the fitted VLMC looking only 3 time periods (48

msec) into the past.

Samples of length n were generated from the stationary distribution of the fitted

VLMCs. We subdivided each sample into non-overlapping words of length L. Figure 2.1

shows this for the Field L model with L = 10. We tried two different word lengths for

each model. The word lengths and entropies are shown in Table 2.2. We then computed

each estimator’s estimate of entropy on the words and divided by the word length to get

an estimate of the entropy rate of the word.

We treat m as unknown in this example and did not include the oracle BUB.o in

the experiment. We used the maximum possible value of m, i.e. |X | for BUB+. In the case

of Field L with L = 10, this is 1,024. The other values are shown in Table 2.2.
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Figure 2.2: The two distributions considered here have finite support, with m = 1, 024.
(Left) The estimated entropy for several different estimators, over a range of sample sizes
n. The lines are average estimates taken over 1,000 independent realizations, and the
vertical bars indicate ± one standard deviation of the estimate. The actual value of H is
indicated by a solid gray horizontal line. MM and JK are the Miller–Maddow and Jackknife
corrected MLEs. BUB-, BUB.o, and BUB+ are the BUB estimator with its m parameter
set to a naive m̂, oracle m = 1024, and twice the oracle m. CAE is the coverage adjusted
estimator. (Right) The corresponding root mean squared error (RMSE). Bias dominates
most estimates. For the uniform distribution, CAE and BUB.o have relatively small biases
and perform very well for sample sizes as small as several hundred. For the Zipf case, the
CAE estimator performs nearly as well as the oracle BUB.o for sample sizes larger than
500.
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Figure 2.3: Simulation results when sampling from two distributions considered with infinite
support (m = ∞). (Methodology is identical to that shown in Figure 2.2.) Results are very
similar to those in Figure 2.2: the CAE estimator performs nearly as well as the oracle
BUB.o.
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Figure 2.4: Simulation results when sampling from stationary a VLMC fit to Field L
neuronal data. (Left) Estimates of entropy rate. Samples of size n, corresponding n 1
millisecond bins, are drawn from a stationary VLMC used to model neuronal data from
Field L of avian auditory system. We applied the “direct method” with two different
wordlengths L. (Top) L = 10 and the maximum number of words is |X | = 1, 024. (Bottom)
L = 15 and |X | = 32, 768. The lines are averages taken over 1,000 independent realizations,
and the vertical bars indicate ± one standard deviation of the estimate. The true H/L is
indicated by a horizontal line. MM and JK are the Miller–Maddow and Jackknife corrected
MLEs. BUB- and BUB+ are the BUB estimator with its m parameter set to a naive
estimate m̂ and the maximum possible number of words |X |: 1,024 for the top and 32,768
for the bottom. CAE is the coverage adjusted estimator. (Right) Root mean squared error
(RMSE). BUB+ has a considerably large bias in both cases. CAE has a moderate balance
of bias and variance and shows a visible improvement over all other estimators in the larger
(L = 15) word case.



29

!
!
!
!!

!!
!!
!!!

!!!
!!!!

!!
!!!!

!

!
! ! ! !!!!!

! ! ! !

100 200 500 2000 5000 20000

1
.0

1
.5

2
.0

2
.5

V1 VLMC (T=5)

sample size (n)

E
s
ti
m

a
te

!
!!
!!
!!!
!!!
!!!!
!!!!!
!!

!!!
!

!
! ! !!

!!!!
! ! ! !

!
!!
!!
!!!
!!!!
!!!!!
!!!!
!!
!!!

! ! ! !!!!
!! ! ! ! !

!!
!!
!!!
!!!!
!!!!!
!!!!!

!!!
!!

! ! ! !!!!!! ! ! ! !

!
!!
!!
!!!
!!!!
!!!!!
!!!!
!!!

!!
! ! ! !!!!!! ! ! ! !

!
!
!
!
!
!
!
!
!
!!!

!
!
!
!
!

!
! ! !!!!!! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!

! ! ! !!!!!!
! ! ! !

!
!!
!!
!!!
!!!
!!!!
!!!!!
!!

!!
!!

!
! ! !!

!!!!
! ! ! !

!
!!
!!
!!!
!!!
!!!!
!!!!!!

!!
!!!

!
! ! !!!

!!! ! ! ! !

!!
!!
!!!
!!!!
!!!!!
!!!!!

!!!
!!

! ! ! !!!!!!
! ! ! !

!
!!
!!
!!!
!!!
!!!!!
!!!!!

!!
!!!

! ! ! !!!!!!
! ! ! !

!

!

!
!
!
!
!
!
!
!
!!!!

!
!
!
!
!

!
! ! !!!!!! ! ! ! !

!!!
!!!
!!!!
!!!!!!!

!!!!!
!!!!

! ! ! !!!!!
! ! ! ! !

! MLE

MM

JK

BUB!

BUB+

CAE

!

!
!
!
!
!
!
!
!
!!!!!!!!!!!!

!
!
!
!
!

!

!
!

! !!!!!
! ! ! !

100 200 500 2000 5000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

sample size (n)

R
M

S
E

!
!!!!

!!
!!!

!!!
!!!!

!!!!
!!!!

!

!
!

! ! !!!!!
! ! ! !

100 200 500 2000 5000 20000

1
.0

1
.5

2
.0

2
.5

V1 VLMC (T=6)

sample size (n)

E
s
ti
m

a
te

!
!!
!!
!!!
!!!
!!!!
!!!!!
!!

!!
!!

!
! ! !

!!!!
!

! ! ! !

!
!!
!!
!!!
!!!!
!!!!
!!!!!

!!
!!!

!
! ! !

!!!!
!

! ! ! !

!
!!
!!
!!!
!!!!
!!!!!
!!!!
!!
!!!

!
! ! !!!

!!!
! ! ! !

!
!!
!!
!!
!!!
!!!!
!!!!!
!!!

!!!
!

! ! ! !!!!
!! ! ! ! !

!

!

!
!
!
!!!!

! ! ! !

!
!!
!!!!!!!!!!!!!!!!!!!!!!! ! ! ! !!!!!!

! ! ! !

!
!!
!!
!!!
!!!
!!!!
!!!!!
!!

!!
!!

!
! ! !

!!!
!!

! ! ! !

!
!!
!!
!!!
!!!!
!!!!
!!!!!

!!
!!!

!
! ! !

!!!!
!

! ! ! !

!
!!
!!
!!!
!!!!
!!!!!
!!!!
!!
!!!

!
! ! !!

!!!!
! ! ! !

!
!!
!!
!!
!!!
!!!!
!!!!!
!!!

!!
!!

!
! ! !!

!!!!
! ! ! !

!

!

!
!
!
!!!!

! ! ! !

!!!
!!!!!!

!!!!!!
!!!!!!

!!!!
!

! ! ! !!!
!!!

! ! ! !

! MLE

MM

JK

BUB!

BUB+

CAE

!

!
!
!
!
!
!
!!!

!!!!!!!!!!!
!
!
!
!
!

!

!
!

!
!
!!!!

!
!

! !

100 200 500 2000 5000 20000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

sample size (n)

R
M

S
E

Figure 2.5: Simulation results when sampling from stationary a VLMC fit to primate
V1 neuronal data. (Left) Estimates of entropy rate. Samples of size n are drawn from
a stationary VLMC used to model neuronal data from V1 of primate visual system. A
single sample corresponds to dt = 16 milliseconds of recording time. We applied the “direct
method” with two different wordlengths L. (Top) L = 5 and the maximum number of
words |X | is 7,776. (Bottom) L = 6 and |X | = 46, 656. The lines are averages taken over
1,000 independent realizations, and the vertical bars indicate ± one standard deviation of
the estimate. The true H/L is indicated by a horizontal line. MM and JK are the Miller–
Maddow and Jackknife corrected MLEs. BUB- and BUB+ are the BUB estimator with
its m parameter set to a naive m̂ and the maximum possible number of words: 7,776 for
the top and 46,656 for the bottom. CAE is the coverage adjusted estimator. (Right) Root
mean squared error (RMSE). CAE has the smallest bias and performs much better than
the other estimators across all sample sizes.
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2.4.3 Results

Standard Models The results are plotted in Figure 2.2 and Figure 2.3. It is surprising

that good estimates can be obtained with just a few observations. Estimating m from its

empirical value marginally improves MM over the MLE. The naive BUB-, which also uses

the empirical value of m, performs about the same as JK.

Bias apparently dominates the error of most estimators. The CAE estimator trades

away bias for a moderate amount of variance. The RMSE results for the four distributions

are very similar. The CAE estimator performs consistently well, even for smaller sample

sizes, and is competitive with the oracle BUB.o estimator. The Zipf distribution example

seems to be the toughest case for the CAE estimator, but it still performs relatively well

for sample sizes of at least 1,000.

Neuronal Data The results are presented in Figure 2.4 and Figure 2.5. The effect of

the dependence in the sample sequences is not clear, but all the estimators seem to be

converging to the truth. CAE consistently performs well for both V1 and Field L, and

really shines in the V1 example. However, for Field L there is not much difference between

the estimators, except for BUB+.

BUB+ uses m equal to the maximum number of words |X | and performs terribly

because the data are so sparse. The maximum entropy corresponding to |X | is much larger

than the actual entropy. In the Field L case, the maximum entropies are 10 and 15, while

the actual entropies are 1.51 and 2.26. In the V1 case, the maximum entropies are 12.9 and

15.5, while the actual entropies are 8.32 and 9.95. This may be the reason that the BUB+

estimator has such a large positive bias in both cases, because the estimator is designed to
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approximately minimize a balance between upper-bounds on worst case bias and variance.

2.4.4 Summary

The coverage adjusted estimator is a good choice for situations where m is unknown

and/or infinite. In these situations, the use of an estimator which requires specification of

m is disadvantageous because a poor estimate (or upper-bound) of m, or the “effective” m

in the infinite case, leads to further error in the estimate. BUB.o, which used the oracle m,

performed well in most cases. However, it is typically not available in practice, because m

is usually unknown.

The Miller–Maddow corrected MLE, which used the empirical value of m, im-

proved on the MLE only marginally. BUB-, which is BUB with the empirical value of m,

performed better than the MLE. It appeared to work in some cases, but not others. For

BUB+, where we overestimated or upper-bounded m (by doubling the oracle m, or using

the maximal |X |), the bias and RMSE increased significantly over BUB.o for small sample

sizes. It appeared to work in some cases, but not others–always alternating with BUB-. In

the case of the neuronal data models, BUB+ performed very poorly. In situations like this,

even though an upper-bound on m is known, it can be much larger than the “effective” m,

and result in a gross error.

2.5 Conclusions

We have emphasized the value of viewing entropy estimation as a problem of

sampling from a population, here a population of words made up of spike train sequence
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patterns. The coverage adjusted estimator performed very well in our simulation study,

and it is very easy to compute. When the word length m is known, the BUB estimator can

perform better. In practice, however, m is usually unknown and, as seen in V1 and Field L

examples, assuming an upper bound on it can result in a large error. The coverage-adjusted

estimator therefore appears to us to be a safer choice.

Other estimates of the probabilities of observed words, such as the profile-based

estimator proposed by Orlitsky et al. (2004), might be used in place of P̃ in the coverage

adjusted entropy estimator.

As is clear from our simulation study, the dominant source of error in estimating

entropy is often bias, rather than variance, which is typically not captured from computed

standard errors. An important problem for future investigation would therefore involve

data-driven estimation of bias in the case of unknown or infinite m.

The V1 and Field L examples have substantial dependence structure, yet methods

derived under the i.i.d. assumption continue to perform well. It may be shown that both the

direct method and the coverage-adjusted estimator remain consistent under the relatively

weak assumption of stationarity and ergodicity, but the rate of convergence will depend on

mixing conditions. On the other hand, in the non-stationary case these methods become

inconsistent. Stationarity is, therefore, a very important assumption.
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2.6 Proofs

We first prove Theorem 2.3. The proof builds on the following application of a

standard concentration technique.

Lemma 2.5. Ĉ → 1 almost surely.

Proof. Consider the number of singletons f1 as a function of xn
1 = (x1, . . . , xn). Modifying a

single coordinate of xn
1 changes the number of singletons by at most 2 because the number of

words affected by such a change is at most 2. Hence Ĉ = 1− f1/n changes by at most 2/n.

Using McDiarmid’s method of bounded differences, i.e. the Hoeffding-Azuma Inequality,

gives

P(|Ĉ − EĈ| > ε) ≤ 2e−
1
2nε2 (2.6.1)

and by consequence of the Borel-Cantelli Lemma, |C − EĈ| → 0 almost surely. To show

that EĈ → 1, we note that 1 ≥ (1− pk)n−1 → 0 for all pk > 0 and

|1− EĈ| = E 1
n

∑

k

1{nk=1}

=
∑

k

pk(1− pk)n−1 → 0 (2.6.2)

as n →∞ by the Bounded Convergence Theorem.

Proof of Proposition 2.1. The bias is

EĈ − P(Xn+1 ∈ S) = P(Xn+1 /∈ S)− E(1− Ĉ)

=
∑

k

pk(1− pk)n −
∑

k

pk(1− pk)n−1

= −
∑

k

p2
k(1− pk)n−1.
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This quantity is trivially non-positive, and a little bit of calculus shows that the bias is

maximized by the uniform distribution pk = 1/n:

∑

k

p2
k(1− pk)n−1 ≤

∑

k

pk max
0≤x≤1

x(1− x)n−1

= max
0≤x≤1

x(1− x)n−1

= (1− 1/n)n−1/n

The variance bound can be deduced from Equation (2.6.1), because Var Ĉ =
∫∞
0 P(|Ĉ −

EĈ|2 > x)dx and Equation (2.6.1) implies

∫ ∞

0
P(|Ĉ − EĈ|2 > x)dx ≤

∫ ∞

0
2e−

1
2nxdx = 4/n.

Proof of Theorem 2.3. From Equation (2.6.1) we conclude that Ĉ = EĈ +OP
(
n−1/2

)
. So

it suffices to show that EĈ = 1 + O (1/(log n)q). Let εn = 1/
√

n. We split the summation

in Equation (2.6.2):

|1− EĈ| =
∑

k:pk≤εn

pk(1− pk)n−1 +
∑

k:pk>εn

pk(1− pk)n−1

Using Lemma 2.6 below, the first term on the right side is

∑

k:pk≤εn

pk(1− pk)n−1 ≤
∑

k:pk≤εn

pk = O (1/(log n)q)

The second term is

∑

k:pk>εn

pk(1− pk)n−1 ≤ (1− εn)n−1
∑

k:pk>εn

pk

≤ (1− εn)n−1

≤ exp(−(n− 1)/
√

n)

by the well-known inequality 1 + x ≤ ex.
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Lemma 2.6 (Wyner and Foster (2003)).

∑

k:pk≤ε

pk ≤
∑

k pk| log pk|q

log(1/ε)q

Proof. Since log(1/x) is a decreasing function,

∑

k:pk≤ε

pk

∣∣∣∣log
1
pk

∣∣∣∣
q

≥
∑

k:pk≤ε

pk

∣∣∣∣log
1
ε

∣∣∣∣
q

and then we collect the log(1/ε)q term to the left side to derive the claim.

Proof of Theorem 2.2. Using the result of Wyner and Foster (2003) that under the above

assumptions, Ĥ = H + OP (1/ log n), it suffices to show |H̃ − Ĥ| = OP (1/ log n). All

summations below will only be over k such that p̂k > 0 or pk > 0. It is easily verified that

H̃ − Ĥ = −
∑

k

p̃k log p̃k

1− (1− p̃k)n
− p̂k log p̂k

= −
∑

k

[
Ĉ

1− (1− p̃k)n
− 1

]
p̂k log p̂k

︸ ︷︷ ︸
Dn

−
∑

k

Ĉp̂k log Ĉ

1− (1− p̃k)n

︸ ︷︷ ︸
Rn

To bound Rn we will use the OP
(
1/(log n)2

)
rate of Ĉ from Theorem 2.3. Note that

Ĉ/n ≤ Ĉp̂k = p̃k ≤ 1 and by the decreasing nature of 1/[1− (1− p̃k)n]

|Rn| ≤
| log Ĉ|

1− (1− Ĉ/n)n

∑

k

p̂k =
| log Ĉ|

1− (1− Ĉ/n)n

By Lemma 2.5, Ĉ → 1 almost surely and since xn → 1 implies (1−xn/n)n → e−1, the right

side is ∼ | log Ĉ|/(1− e−1) = OP
(
1/(log n)2

)
. As for Dn,

|Dn| ≤−
∑

k

|Ĉ − 1|+ (1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k



36

and since p̃k ≥ Ĉ/n whenever p̃k > 0,

−
∑

k

|Ĉ − 1|
1− (1− p̃k)n

p̂k log p̂k ≤
|Ĉ − 1|

1− (1− Ĉ/n)n
Ĥ

∼ |Ĉ − 1|
1− e−1

Ĥ

= OP
(
1/(log n)2

)

because Ĥ is consistent. The remaining part of Dn will require a bit more work and we will

split it according to the size of p̂k. Let εn = log n/n. Then

−
∑

k

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k =−

∑

k:p̂k≤εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k

−
∑

k:p̂k>εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k

Similarly to our previous argument, (1−p̃k)n

1−(1−p̃k)n is decreasing in p̃k. So the second summation

on the right side is

−
∑

k:p̂k>εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k ≤

(1− εn)n

1− (1− εn)n
Ĥ

= OP (1/n)

For the remaining summation, we use the fact that p̃k ≥ Ĉ/n and the monotonicity argu-

ment once more.

−
∑

k:p̂k≤εn

(1− p̃k)n

1− (1− p̃k)n
p̂k log p̂k ≤ −

(1− Ĉ/n)n

1− (1− Ĉ/n)n

∑

k:p̂k≤εn

p̂k log p̂k

By the consistency of Ĉ, the leading term converges to the constant e−1/(1− e−1) and can

be ignored. Since − log p̂k ≤ log n,

−
∑

k:p̂k≤εn

p̂k log p̂k ≤ log n
∑

k:p̂k≤εn

p̂k
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We split the summation once last time, but according to the size of pk.

log n
∑

k:p̂k≤εn

p̂k ≤ log n




∑

k:pk>1/
√

n

εn +
∑

k:pk≤1/
√

n

p̂k





≤ (log n)2√
n

+ log n
∑

k:pk≤1/
√

n

p̂k,

where we have used the fact that |{k : pk > 1/
√

n}| ≤
√

n. Taking expectation, applying

Lemma 2.6 and Markov’s Inequality shows that

= log n
∑

k:pk≤1/
√

n

p̂k = OP (1/ log n)

The proof is complete because (log n)2/
√

n is also O (1/ log n).
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Chapter 3

Information Under

Non-Stationarity

3.1 Introduction

Information estimates are frequently calculated using data from experiments where

the stimulus and response are dynamic and time-varying (see for instance Hsu et al. (2004);

Reich et al. (2001); Reinagel and Reid (2000); Nirenberg et al. (2001)). For mutual in-

formation to be properly defined, see for example Cover and Thomas (1991), the stimulus

and response must be considered random, and when the estimates are obtained from time-

averages, they should also be stationary and ergodic. In practice these assumptions are

usually tacit, and information estimates, such as the direct method proposed by Strong

et al. (1998), can be made without explicit consideration of the stimulus. This can lead to

misinterpretation.
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In this chapter we show that the direct method information estimate can be rein-

terpreted as the average divergence across time of the conditional response distribution from

its overall mean; in the absence of stationarity and ergodicity:

1. information estimates do not necessarily estimate mutual information, but

2. potentially useful interpretations can still be made by referring back to the time-

varying divergence.

Although our results are specialized to the direct method with the plug-in entropy estimator,

they should hold more generally regardless of the choice of entropy estimator.

The fundamental issue concerns stationarity: methods that assume stationarity are

unlikely to be appropriate when stationarity appears to be violated. In the non-stationary

case, our second result should be of use, as would be other methods that explicitly con-

sider the dynamic and non-stationary nature of the stimulus and response; see for instance

Barbieri et al. (2004).

We begin with a brief review of the direct method and plug-in entropy estimator.

This is followed by results showing that the information estimate can be recast as a time-

average. This characterization leads us to the interpretation that the information estimate

is actually a measure of variability of the stimulus conditioned response distribution. This

observation is first made in the finite number of trials case, and then formalized by a theorem

describing the limiting behavior of the information estimate as the number of trials tends

to infinity. Following the theorem is discussion about the interpretation of the limit, and

examples that illustrate the interpretation with a proposed graphical plot.
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3.2 The Direct Method

In the direct method a time-varying stimulus is chosen by the experimenter and

then repeatedly presented to a subject over multiple trials. The observed responses are

conditioned by the same stimulus. Two types of variation in the response are considered:

1. variation across time (potentially related to the stimulus), and

2. trial-to-trial variation.

Figure 3.1(a) shows an example of data from such an experiment. The upper panel is a

raster plot of the response of a Field L neuron of an adult male Zebra Finch during synthetic

song stimulation. The lower panel is a plot of the audio signal corresponding to the natural

song. Details of the experiment can be found in Hsu et al. (2004).

Let us consider the random process {St, Xk
t } representing the value of the stimulus

and response at time t = 1, . . . , n during trial k = 1, . . . ,m. The response is made discrete

by dividing time into bins of size dt and then considering words (or patterns) of spike

counts formed within intervals (overlapping or non-overlapping) of L adjacent time bins.

The number of spikes that occur in each time bin become the letters in the words. Xk
t

corresponds to these words, and may belong to a countably infinite set (because the number

of spikes in a bin is theoretically unbounded). In the raster plot of Figure 3.1(a) the time

bin size is dt = 1 millisecond, and the vertical lines demarcate non-overlapping words of

length L = 10 time bins.

Given the responses {Xk
t }, the direct method considers two different entropies:

1. the total entropy H of the response, and
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Figure 3.1: (a) Raster plot of the response of the a Field L neuron of an adult male Zebra
Finch (above) during the presentation of a synthetic audio stimulus (below) for 10 repeated
trials. The vertical lines indicate boundaries of L = 10 millisecond (msec) words formed at
a resolution of dt = 1 msec. The data consists of 10 trials, each of duration 2000 msecs.
(b) The coverage adjusted estimate (solid line) of D(Pt, P̄ ) from the response shown above
with 10 msec words. Pointwise 95% confidence intervals are indicated by the shaded region
and obtained by bootstrapping the trials 1000 times. The information estimate, 0.77 bits
(per 10msec word, or 0.077 bits/msec), corresponds to the average value of the solid curve.
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2. the local noise entropy Ht of the response at time t.

The total entropy is associated with the stimulus conditioned distribution of the response

across all times and trials. The local noise entropy is associated with the stimulus condi-

tioned distribution of the response at time t across all trials. These quantities are calculated

directly from the neural response, and the difference between the total entropy and the av-

erage (over t) noise entropy is what Strong et al. (1998) call “the information that the spike

train provides about the stimulus.”

H and Ht depend implicitly on the length L of the words. Normalizing by L

and considering large L leads to the total and local entropy rates that are defined to be

limL→∞H(L)/L and limL→∞Ht(L)/L, respectively, when they exist. The direct method of

Strong et al. (1998) prescribed an extrapolation for estimating these limits, however they do

not necessarily exist when the stimulus and response process are non-stationary. When there

is stationarity, estimation of entropy for large L is potentially difficult, and extrapolation

from a few small choices of L can be suspect. Since we are primarily interested in the non-

stationary case, we do not address these issues and refer the reader to Kennel et al. (2005);

Gao et al. (2006) for larger discussion on the stationary case. For notational simplicity, the

dependence on L will be suppressed.

The plug-in entropy estimate Strong et al. (1998) proposed estimating H and Ht by

plug-in with the corresponding empirical distributions:

P̂ (r) :=
1

mn

n∑

t=1

m∑

k=1

1{Xk
t =r} (3.2.1)
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and

P̂t(r) :=
1
m

m∑

k=1

1{Xk
t =r}. (3.2.2)

Note that P̂ is also the average of P̂t across t = 1, . . . , n. So the direct method plug-in

estimates1 of H and Ht are

Ĥ := −
∑

r

P̂ (r) log P̂ (r),

and

Ĥt := −
∑

r

P̂t(r) log P̂t(r),

respectively. The direct method plug-in information estimate is

Î := Ĥ − 1
n

n∑

t=1

Ĥt. (3.2.3)

3.3 Interpretation of the Information Estimate

The direct method information estimate is not only the difference of entropies

shown in Equation (3.2.3), but also a time-average of divergences. The empirical distribution

of response across all trials and times Equation (3.2.1) is equal to the average of P̂t over
1Strong et al. (1998) used the name naive estimates.
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time. That is P̂ (r) = n−1 ∑n
t=1 P̂t(r) and so

Î = Ĥ − 1
n

n∑

t=1

Ĥt

=
1
n

n∑

t=1

∑

r

P̂t(r) log P̂t(r)−
∑

r

[
1
n

n∑

t=1

P̂t(r)

]
log P̂ (r)

=
1
n

n∑

t=1

∑

r

P̂t(r) log P̂t(r)−
1
n

n∑

t=1

∑

r

P̂t(r) log P̂ (r)

=
1
n

n∑

t=1

∑

r

P̂t(r) log
P̂t(r)
P̂ (r)

. (3.3.1)

The quantity that is averaged over time in Equation (3.3.1) is the Kullback-Leibler di-

vergence between the empirical time t response distribution P̂t and the average empirical

response distribution P̂ .

Since the same stimulus is repeatedly presented to the subject, and there is no

evolution in the response, over multiple trials, a repeated trial assumption is natural:

• Conditional on the stimulus {St} the m trials {St, X1
t }, . . . , {St, Xm

t } are independent

and identically distributed (i.i.d.).

Under this assumption 1{X1
t =r}, . . . , 1{Xm

t =r} are conditionally i.i.d. for each fixed t and r.

Furthermore, the law of large numbers guarantees that as the number of trials m increases

the empirical response distribution P̂t(r) converges to its conditional expected value for

each fixed t and r. Thus P̂t(r) and P̂ (r) can be viewed as estimates of Pt(r|S1, . . . , Sn),

defined by

Pt(r|S1, . . . , Sn) := P(Xk
t = r|S1, . . . , Sn) = E{P̂t(r)|S1, . . . , Sn},

and P̄ (r|S1, . . . , Sn), defined by

P̄ (r|S1, . . . , Sn) :=
1
n

n∑

t=1

Pt(r|S1, . . . , Sn),
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respectively. P̄ is average response distribution across time t = 1, . . . , n conditional on the

entire stimulus {S1, . . . , Sn}.

So the quantity that is averaged over time in Equation (3.3.1) should be viewed

as a plug-in estimate of the Kullback-Leibler divergence between Pt and P̄ . We emphasize

this by writing

D̂(Pt||P̄ ) :=
∑

r

P̂t(r) log
P̂t(r)
P̂ (r)

.

This observation will be formalized by the theorem of the next section. For now we sum-

marize the above with a proposition.

Proposition 3.1. The information estimate is the time-average Î = 1
n

∑n
t=1 D̂(Pt||P̄ ).

This decomposition of the information estimate is analogous to the decomposition

of mutual information that Deweese and Meister (1999) call the “specific surprise,” while

“specific information” is analogous to the alternative decomposition,

Î =
1
n

n∑

t=1

[Ĥ − Ĥt]. (3.3.2)

An important difference is that here the stimulus itself is a function of time and the decom-

positions are given in terms of time-dependent quantities. It is possible that these quantities

can reveal dynamic aspects of the stimulus and response relationship. This will be explored

further in Section 3.3.2 and Section 3.3.4.

3.3.1 What is being estimated?

There are two directions in which the amount of observed response data can be

increased: length of time n, and number of trials m. The information estimate is the average
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of D̂(Pt||P̄ ) over time, and may not necessarily converge as n increases. This could be due

to {St, Xk
t } being non-stationary and/or highly dependent in time. Even when convergence

may occur, the presence of serial correlation. See the autocorrelation in Figure 3.2(b) for

example. in D̂(Pt||P̄ ) can make assessments of uncertainty in Î difficult.

Assuming that the stimulus and response process is stationary and not too depen-

dent in time could guarantee convergence, but this could be unrealistic. On the other hand,

the repeated trial assumption is appropriate if the same stimulus is repeatedly presented to

the subject over multiple trials. It is also enough to guarantee that the information estimate

converges as the number of trials m increases.

Theorem 3.2. Suppose that Pt has finite entropy for all t = 1, . . . , n. Then under the

repeated trial assumption

lim
m→∞

Î = H(P̄ )− 1
n

n∑

t=1

H(Pt) =
1
n

n∑

t=1

[H(P̄ )−H(Pt)] =
1
n

n∑

t=1

D(Pt||P̄ )

with probability 1, and in particular the following statements hold uniformly for t = 1, . . . , n

with probability 1:

1. limm→∞ Ĥ = H(P̄ ),

2. limm→∞ Ĥt = H(Pt), and

3. limm→∞ D̂(Pt||P̄ ) = D(Pt||P̄ ) for t = 1, . . . , n,

where D(Pt||P̄ ) is the Kullback-Leibler divergence defined by,

D(Pt||P̄ ) :=
∑

r

Pt(r|S1, . . . , Sn) log
Pt(r|S1, . . . , Sn)
P̄ (r|S1, . . . , Sn)

,
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and H(P ) is the entropy of the distribution P , defined by

H(P ) := −
∑

r

P (r) log P (r).

See Section 3.5 for the proof. Note that if stationary and ergodicity do hold, then

Pt for t = 1, . . . , n is also stationary and ergodic2. So its average, P̄ (r), is guaranteed by

the ergodic theorem to converge pointwise to P (X1
1 = r) as n → ∞. Moreover, if X1

1 can

only take on a finite number of values, then H(P̄ ) also converges to the marginal entropy

H(X1
1 ) of X1

1 . Likewise, the average of the conditional entropy H(Pt) also converges to the

expected conditional entropy: limn→∞H(X1
n|S1, . . . , Sn). So in this case the information

estimate does indeed estimate mutual information.

However, the primary consequence of the theorem is that, in the absence of sta-

tionarity and ergodicity, the information estimate Î does not necessarily estimate mutual

information. The three particular statements show that the time-varying quantities [Ĥ−Ĥt]

and D̂(Pt||P̄ ) converge individually to the appropriate limits, and justify our assertion that

the information estimate is a time-average of plug-in estimates of the corresponding time-

varying quantities. Thus, the information estimate can always be viewed as an estimate of

the time-average of either D(Pt||P̄ ) or [H(P )−H(Pt)]—stationary and ergodic or not.

3.3.2 Time-averaged Divergence

The Kullback-Leibler Divergence D(Pt||P̄ ) has a simple interpretation: it measures

the dissimilarity of the time t response distribution Pt from its overall average P̄ . So as a

function of time, D(Pt||P̄ ) measures how the conditional response distribution varies across
2Pt and P̄ are stimulus conditional distributions, and hence random variables potentially depending on

S1, . . . , Sn.
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time, relative to its overall mean. This can be seen in a more familiar form by considering

the leading term of the Taylor expansion,

D(Pt||P̄ ) =
1
2

∑

r

[Pt(r|S1, . . . , Sn)− P̄ (r|S1, . . . , Sn)]2

P̄ (r|S1, . . . , Sn)
+ · · · .

Thus, its average is in this sense a measure of the average variability of the response distri-

bution.

It is, of course, possible that characteristics of the response are due to confounding

factors rather than the stimulus. Furthermore, the presence of additional noise in either

process would weaken a measured relationship between stimulus and response, compared

to its strength if the noise were eliminated. Setting these concerns aside, the variation of

the response distribution Pt about its average provides information about the relationship

between the stimulus and the response. In the stationary and ergodic case, this informa-

tion may be averaged across time to obtain mutual information. In more general settings

averaging across time may not provide a complete picture of the relationship between stim-

ulus and response. Instead, we suggest examining the time-varying D(Pt||P̄ ) directly, via

graphical display as discussed next.

3.3.3 Coverage Adjusted Estimation of D(Pt||P̄ )

The plug-in estimate D̂(Pt||P̄ ) is an obvious choice for estimating D(Pt||P̄ ), but

it turns out that estimating D(Pt||P̄ ) is akin to estimating entropy. Since the trials are

conditionally i.i.d., the coverage adjustment method described in Chapter 2 can be used to

improve estimation of D(Pt||P̄ ) over the plug-in estimate. The main idea behind coverage

adjustment is to adjust estimates for potentially unobserved values. This happens in two
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places: estimation of Pt and estimation of D(Pt||P̄ ). In the first case, unobserved values

affect the amount of weight that P̂t, defined in Equation (3.2.2) in the main text, places

on observed values. In the second case unobserved values correspond to missing summands

when plugging P̂t into the Kullback-Leibler divergence. See Chapter 2 for a more thorough

explanation of these ideas. Let

Nt(r) :=
m∑

k=1

1{Xk
t =r}.

The sample coverage, or total Pt-probability of observed values r, is estimated by Ĉt defined

by

Ĉt := 1− #{r : Nt(r) = 1}+ .5
m + 1

.

The number in the numerator of the fraction refers to the number of singletons—patterns

that were observed only once across the m trials at time t. Then the coverage adjusted

estimate of Pt is the following shrunken version of P̂t:

P̃t(r) = ĈtP̂t(r).

P̄ is estimated by simply averaging P̃t:

P̃ (r) =
1
n

n∑

t=1

P̃t(r).

The coverage adjusted estimate of D(Pt||P̄ ) is obtained by plugging P̃t and P̃ into the

Kullback-Leibler divergence, but with an additional weighting on the summands according

to the inverse of the estimated probability that the summand is observed:

D̃(Pt||P̄ ) :=
∑

r

P̃t(r){log P̃t(r)− log P̃ (r)}
1− (1− P̃t(r))m

.
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The additional weighting is to correct for potentially missing summands. Confidence inter-

vals for D(Pt||P̄ ) can be obtained by bootstrap sampling entire trials, and applying D̃ to

the bootstrap replicate data.

3.3.4 Plotting D(Pt||P̄ )

Figure 3.1(a) and Figure 3.2(a) show the responses of the same Field L neuron of an

adult male Zebra Finch under two different stimulus conditions. Details of the experiment

and the statistics of the stimuli are described in Hsu et al. (2004). Panel (a) of the figures

shows the stimulus and response data. In Figure 3.1(a) the stimulus is synthetic and

stationary by construction, while in Figure 3.2(a) the stimulus is a natural song. Panel (b)

of the figures shows the coverage adjusted estimate of the divergence D(Pt||P̄ ) plotted as a

function of time. 95% confidence intervals were formed by bootstrapping entire trials, i.e.

an entire trial is either included in or excluded from a bootstrap sample.

The information estimate going along with each Divergence plot is the average

of the solid curve representing the estimate of D(Pt||P̄ ). It is equal to 0.77 bits (per 10

millisecond word) in Figure 3.1(b) and 0.76 bits (per 10 millisecond word) in Figure 3.2(b).

Although the information estimates are nearly identical, the two plots are very different.

In the first case, the stimulus is stationary by construction and it appears that

the time-varying divergence is too. Its fluctuations appear to be roughly of the same scale

across time, and its local mean is relatively stable. The average of the solid curve seems to

be a fair summary.

In the second case the stimulus is a natural song. The isolated bursts of the time-
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Figure 3.2: (a) Same as in Figure 3.1(a), but in this set of trials the stimulus is a conspecific
natural song. (b) The coverage adjusted estimate (solid line) of D(Pt, P̄ ) from the response
shown above. Pointwise 95% confidence intervals are indicated by the shaded region and
obtained by bootstrapping the trials 1000 times. The information estimate, 0.76 bits (per
10 msec word or 0.076 bits/msec), corresponds to the average value of the solid curve.
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varying divergence and relatively flat regions in Figure 3.2(b) suggest that the response

process (and the divergence) is non-stationary and has strong serial correlations. The local

mean of the divergence also varies strongly with time. Summarizing D(Pt||P̄ ) by its time-

average hides the time-dependent features of the plot.

More interestingly, when the divergence plot is compared to the plot of the stimulus

in Figure 3.2(a), there is a striking coincidence between the location of large isolated values

of the estimated divergence and visual features of the stimulus waveform. They tend to

coincide with the boundaries of the bursts in the stimulus signal. This suggests that the

spike train may carry information about the onset/offset of bursts in the stimulus. We

discussed this with the Theunissen Lab and they confirmed from their STRF models that

the cell in the example is an offset cell. It tends to fire at the offsets of song syllables—the

bursts of energy in the stimulus waveform. They also suggested that a word length within

the range of 30–50 milliseconds is a better match to the length of correlations in the auditory

system. We regenerated the plots for words of length L = 40 (not shown here) and found

that the isolated structures in the divergence plot became even more pronounced.

3.4 Conclusions

Estimates of mutual information, including the plug-in estimate, may be viewed

as measures of the strength of the relationship between the response and the stimulus when

the stimulus and response are jointly stationary and ergodic. Many applications, however,

use non-stationary or even deterministic stimuli, so that mutual information is no longer

well defined. In such non-stationary cases do estimates of mutual information become
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meaningless? We think not, but the purpose of this chapter has been to point out the

delicacy of the situation, and to suggest a viable interpretation of information estimates,

along with the divergence plot, in the non-stationary case.

In using stochastic processes to analyze data there is an implicit practical acknowl-

edgment that assumptions cannot be met precisely: the mathematical formalism is, after

all, an abstraction imposed on the data; the hope is simply that the variability displayed

by the data is similar in relevant respects to that displayed by the presumptive stochas-

tic process. The “relevant respects” involve the statistical properties deduced from the

stochastic assumptions. The point we are trying to make is that highly non-stationary

stimuli make statistical properties based on an assumption of stationarity highly suspect;

strictly speaking, they become void.

To be more concrete, let us reconsider the snippet of natural song and response

displayed in Figure 3.2(a). When we look at the less than 2 seconds of stimulus amplitude

given there, the stimulus is not at all time-invariant: instead, the stimulus has a series of

well-defined bursts followed by periods of quiescence. Perhaps, on a very much longer time

scale, the stimulus would look stationary. But a good stochastic model on a long time scale

would likely require long-range dependence. Indeed, it can be difficult to distinguish non-

stationarity from long-range dependence (Künsch, 1986), and the usual statistical properties

of estimators are known to breakdown when long-range dependence is present (Beran, 1994).

Given a short interval of data, valid statistical inference under stationarity assumptions

becomes highly problematic. To avoid these problems we have proposed the use of the

divergence plot, and a recognition that the “bits per second” summary is no longer mutual
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information in the usual sense. Instead we would say that the estimate of information

measures magnitude of variation of the response as the stimulus varies, and that this is a

useful assessment of the extent to which the stimulus affects the response as long as other

factors that affect the response are themselves time-invariant. In other deterministic or

non-stationary settings the argument for the relevance of an information estimate should be

analogous. Under stationarity and ergodicity, and indefinitely many trials, the stimulus sets

that affect the response—whatever they are—will be repeatedly sampled, with appropriate

probability, to determine the variability in the response distribution, with time-invariance

in the response being guaranteed by the joint stationarity condition. This becomes part

of the intuition behind mutual information. In the deterministic or non-stationary settings

information estimates do not estimate mutual information, but they may remain intuitive

assessments of strength of effect.
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3.5 Proofs

We will use the following extension of the Lebesgue Dominated Convergence The-

orem in the proof of Theorem 3.2.

Lemma 3.3. Let fm and gm for m = 1, 2, . . . be sequences of measurable, integrable func-

tions defined on a measure space equipped with measure µ, and with pointwise limits f and

g, respectively. Suppose further that |fm| ≤ gm and limm→∞
∫

gm dµ =
∫

g dµ < ∞. Then

lim
m→∞

∫
fm dµ =

∫
lim

m→∞
fm dµ.

Proof. By linearity of the integral,

lim inf
n→∞

∫
(g + gm) dµ− lim sup

n→∞

∫
|f − fm| dµ = lim inf

n→∞

∫
(g + gm)− |f − fm| dµ.

Since 0 ≤ (g + gm)− |f − fm|, Fatou’s Lemma implies

lim inf
n→∞

∫
(g + gm)− |f − fm| dµ ≥

∫
lim inf
n→∞

(g + gm)− |f − fm| dµ.

The limit inferior on the inside of the right-hand integral is equal to 2g by assumption.

Combining with the previous two displays and the assumption that
∫

gm dµ →
∫

g dµ gives

lim sup
n→∞

|
∫

fdµ−
∫

fmdµ| ≤ lim sup
n→∞

∫
|f − fm|dµ ≤ 0.

Proof of Theorem 3.2. The main statement of the theorem is implied by the three numbered

statements together with Proposition 3.1. We start with the second numbered statement.

Under the repeated trial assumption, X1
t , . . . , Xm

t are conditionally i.i.d. given the stimulus
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{St}. So Corollary 1 of Antos and Kontoyiannis (2001), can be applied to show that

lim
m→∞

Ĥt = lim
m→∞

−
∑

r

P̂t(r) log P̂t(r)

= −
∑

r

Pt(r|S1, . . . , Sn) log Pt(r|S1, . . . , Sn) (3.5.1)

= H(Pt)

with probability 1. This proves the first numbered statement.

We will use Lemma 3.3 to prove the first numbered statement. For each r the law

of large numbers asserts limm→∞ P̂t(r) = Pt(r|S1, . . . , Sn) with probability 1. So for each

r,

lim
m→∞

−P̂t(r) log P̂ (r) = −Pt(r|S1, . . . , Sn) log P̄ (r|S1, . . . , Sn)

and

lim
m→∞

−P̂t(r) log P̂t(r) = −Pt(r|S1, . . . , Sn) log Pt(r|S1, . . . , Sn)

with probability 1. Fix a realization where the above limits hold and let

fm(r) := −P̂t(r) log P̂ (r)

and

gm(r) := −P̂t(r)[log P̂t(r)− log n].

Then for each r

lim
m→∞

fm(r) = −Pt(r|S1, . . . , Sn) log P̄ (r|S1, . . . , Sn) =: f(r)

and

lim
m→∞

gm(r) = −Pt(r)[log Pt(r)− log n] =: g(r).
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The sequence fm is dominated by gm because

0 ≤ −P̂t(r) log P̂ (r) = fm(r)

= −P̂t(r)[log
n∑

u=1

P̂u(r)− log n]

≤ −P̂t(r)[log P̂t(r)− log n] (3.5.2)

= gm(r)

for all r, where Equation (3.5.2) uses the fact that log x is an increasing function. From

Equation (3.5.1) we also have that limm→∞
∑

r gm(r) =
∑

r g(r). Clearly, fm and gm are

summable. Moreover H(Pt) < ∞ by assumption. So

∑

r

g(r) =
∑

r

−Pt(r) log Pt(r) + log n
∑

r

Pt(r) = H(Pt) + log n < ∞

and the conditions of Lemma 3.3 are satisfied. Thus

lim
m→∞

∑

r

−P̂t(r) log P̂ (r) = lim
m→∞

∑

r

fm(r) =
∑

r

f(r) =
∑

r

−Pt(r) log P̄ (r). (3.5.3)

Averaging over t = 1, . . . n gives

Ĥ = lim
m→∞

∑

r

−P̂ (r) log P̂ (r) =
∑

r

−P̄ (r) log P̄ (r) = H(P̄ ).

This proves the first numbered statement.

For the third numbered statement we begin with the expansions

D̂(Pt||P̄ ) =
∑

r

P̂t(r) log P̂t(r)− P̂t(r) log P̂ (r).

and

D(Pt||P̄ ) =
∑

r

Pt(r) log Pt(r)− Pt(r) log P̄ (r).
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The second numbered statement and Equation (3.5.3) imply

lim
m→∞

∑

r

P̂t(r) log P̂t(r)− P̂t(r) log P̂ (r) =
∑

r

Pt(r) log Pt(r)−
∑

r

Pt(r) log P̄ (r)

with probability 1. This proves the third numbered statement.
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Part II

Regularized Regression
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Chapter 4

Sparse Nonparametric Regression

of V1 fMRI on Natural Images

4.1 Introduction

There are two main classes of problems in computational neuroscience: encoding

and decoding. Encoding deals with the forward problem of modeling the neural response as a

function of the sensory stimulus. Decoding is the inverse problem of predicting the stimulus

from the neural response. In this chapter we focus on the encoding problem. Specifically,

we model brain activity in area V1 of the human visual cortex, as measured by functional

magnetic resonance imaging, in response to natural image stimuli.

4.1.1 Functional MRI

Functional magnetic resonance imaging (fMRI) provides an indirect measure of

brain activity. Magnetic resonance imaging is based on how certain nuclei such as hydrogen
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atoms align under magnetic fields. By modulating the field, these aligning behaviors can

then be detected in a radio-frequency coil. When neurons in the brain are active, there is

an increased oxygenated blood flow to that neuron. Oxygenated hemoglobin in the blood is

diamagnetic and aligns against a surrounding magnetic field while deoxygenated hemoglobin

is paramagnetic and aligns with a magnetic field. This difference in magnetic susceptibility

is then captured by a sequence of magnetic resonance images that constitute the Blood

Oxygen Level Dependent (BOLD) fMRI signal. The relationship between measured fMRI

activity and the spiking activity of neurons is thus not direct. The fMRI images of the

brain are typically taken at the rate of one or two per second, where each image comprises

values in a three-dimensional grid of volume elements called voxels, each of size a few cubic

millimeters.

4.1.2 Area V1

The visual cortex is located in the occipital lobe at the back of the brain, and

consists of several areas including V1 through V5. The focus of this chapter is area V1,

also called the primary visual cortex. V1 consists mainly of two types of neurons: simple

cells and complex cells. An important characterization of a neuron is its spatial receptive

field, which is the region of visual space where a stimulus can affect the firing response of

that neuron. Further, it is only stimuli with specific properties that can affect the neural

response. Hubel and Wiesel (1962), Daugman (1985) and others observed that stimuli with

an elongated envelope of high luminance, flanked on both sides by an elongated envelope

of low luminance, or vice vera, are the most excitatory stimuli for simple cells. As regards

complex cells, Hubel and Wiesel (1962) and others observed that their spatial receptive
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fields were larger than that of simple cells, and that their responses were mostly invariant

to the spatial phase of stimuli.

4.1.3 The Data

The data set analyzed in this chapter was obtained from the fMRI experiment

described in Kay et al. (2008). It consists of a total of 1,294 voxels, each of size 2mm x

2mm x 2.5mm, from area V1 of one human subject. The BOLD signals were recorded from

voxels at a frequency of 1Hz using a 4T Varian MRI scanner. The sensory stimuli used in

the experiment consisted of 20-by-20 degree grayscale natural images, masked by a circular

aperture. (See Figure 4.1 for some instances.) The motivations behind studying responses

to natural image stimuli are three-fold. Firstly, natural images are an efficient stimulus set

for probing the visual system, because they are likely to evoke responses from both early

visual areas as well as from more central, highly nonlinear visual areas. Secondly, if the

neural response is nonlinear in the image stimuli, then the response to a complex stimulus

such as a natural image cannot be expressed in terms of responses to simpler stimuli such

as gratings. Finally, natural images are a strict subset of the set of all images and the

brain has likely evolved to effectively respond to these. Two recent observations provide

evidence of such adaptation. Olshausen and Field (1996) computed the optimal basis to

encode natural images, and found these to resemble Gabor wavelets. Daugman (1985) had

in turn observed that Gabor wavelets resembled the receptive fields of simple cell neurons

in area V1. Thus, it would be most interesting to study the fMRI responses of the brain to

the natural image stimuli that it has adapted to.
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Figure 4.1: Some natural image stimuli.

The fMRI datasets for model estimation and model validation were collected sepa-

rately. 1,750 natural images were used as stimuli for the model estimation data set, while a

distinct set of 120 natural images were used for the model validation data set. The images

were shown in a sequence of trials, each of which consisted of the image being flashed briefly

3 times during a 1 second display period, followed by a blank period of 3 seconds. For the

estimation data set, each image was shown in two trials over the sequence of trials, while in

the validation data set each image was shown in thirteen trials over the sequence. Further

details of the fMRI experiment can be found in Kay et al. (2008).

Pre-processing

For each of the model estimation and validation dataset, at the end of the image

trial sequences we obtain the fMRI signal as a time-series recorded at 1Hz, at each of the 1294

voxels. This raises two main pre-processing concerns. The first is that if each distinct image

stimulus has a separate time-series BOLD response, also called a hemodynamic response
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function, then the observed time-series signal consists of a superposition of all these separate

response functions. It is thus necessary to “deconvolve” these separate response function

signals from the observed combination signal. The second is that the fMRI signal has a

smooth “drift” throughout the experiment, often at magnitude larger than task-related

signal. The drift is due to varied factors such as the fMRI machine and steady variations in

blood pressure. The basis-restricted separable model addresses both of these concerns (Dale,

1999; Kay et al., 2008). Deferring details to Section 4.8, at the end of the pre-processing, for

each image stimulus, we obtain a scalar response amplitude at each voxel. In other words,

both the model estimation and validation datasets consist of a set of image stimuli used as

input, and as output for each image stimulus there is a scalar response amplitude at each

of the 1,294 voxels.

4.2 Previous Work

4.2.1 Models of Area V1 Neurons

Daugman (1985) had observed that the receptive fields of simple cells resembled

spatial Gabor wavelets. Interestingly, Gabor wavelets were also found to be an optimal

basis for encoding natural images (Olshausen and Field, 1996). A Gabor wavelet can be

written (up to centering and scaling) as the product of a bivariate Gaussian density and a

spatial sinusoidal function (or cosine grating),

φ(%x) ∝ exp{−ω2(%x− µ)T K(%x− µ)/2} cos(ω〈θ, %x− µ〉+ ψ), (4.2.1)



65

Figure 4.2: (a) Gabor wavelets identical up to location and frequency (in cycles per field-
of-view). (b) Gabor wavelets with the same spatial frequency, but of differing orientations
and phases.

where %x = (x, y) are spatial coordinates, and 〈·, ·〉 is the Euclidean inner product. The

Gaussian density acts as a window that localizes the wavelet in space, while the sinusoid

localizes the wavelet in the spatial Fourier domain. So the parameters (ω, θ, ψ) determine

the wavelet’s frequency, orientation, and phase, while the parameters (µ, K) determine the

spatial location and envelope of the window. Figure 4.2 shows some examples of Gabor

wavelets.

Simple cells

Hubel and Wiesel (1962), Movshon et al. (1978a) and others have shown that

simple cell outputs are roughly linear in the image stimuli intensities. Daugman (1985)

showed further that the corresponding set of linear combination weights, as a linear filter,
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resemble Gabor wavelets. A simple cell is thus typically modeled as follows (Kay et al.,

2008). Let I denote an image represented as a vector of pixel intensities. Suppose the

number of pixels is d so that I ∈ Rd. Denote by φj a mean 0, norm 1, Gabor wavelet

sampled on a grid the size of the image, so that it too can be represented as vector in Rd.

Then the model simple cell neural activation given an image I is

Xj(I) = [〈φj , I〉]+, (4.2.2)

where [·]+ is a non-negative rectification, or thresholding. (See Figure 4.3.) Correspond-

ingly, Xj(I) = [〈−φj , I〉]+ gives the activation of the 180◦ spatial phase counterpart. The

rectification obtains a firing rate from the internal signal of the neuron.

Gabor wavelet non-negative rectificationimage output

Figure 4.3: Simple cell model. The activation of a model simple cell given an image is the
inner product of the image with a Gabor wavelet, followed by a non-negative rectification.

Complex cells

Complex cells were initially identified as being nonlinear in the image stimulus.

Hubel and Wiesel (1962), Movshon et al. (1978b) and others observed that, like simple cells,

complex cells are selective for spatial frequency and orientation of the stimulus, however

their response is invariant to the stimulus’ spatial phase. This property can be modeled

by computing the sum of squares of the outputs of four simple cells that are identical up

to spatial phase, followed by a monotonically increasing output nonlinearity h : [0,∞) 0→
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[0,∞) (Kay et al., 2008). Thus the activation of the model complex cell given an image I

is defined as

Xj(I) = h
(
[〈φj , I〉]2+ + [〈−φj , I〉]2+ + [〈φ′j , I〉]2+ + [〈−φ′j , I〉]2+

)
, (4.2.3)

where φj and φ′j are Gabor wavelets identical up to phase (also called a quadrature pair;

see Figure 4.4).

Gabor wavelet quadrature pair squaring fixed nonlinearity

+

outputimage

Figure 4.4: Complex cell model. The activation of a model complex cell given an image is
the sum of squares of 4 simple cell model outputs, followed by a nonlinearity.

4.2.2 Linear Models

Let pc denote the number of complex cell filters, {X1, . . . , Xpc}. Kay et al. (2008)

modeled the fMRI response Y (I) to a stimulus image I as a linear model,

Y (I) = β0 +
pc∑

j=1

βjXj(I) + ε. (4.2.4)

In our experiments, we used as a benchmark a sparse variant of this model with the nonlin-

earity fixed to be h(t) = log(1+
√

t). The sparse variant constrains the set J = {j : βj 1= 0}

to be small, and captures the empirical observation that the response at any voxel is recep-

tive to stimuli in a small specific spatial region, so that the set of active complex cells at a

single voxel would be sparse. Our choice of h was based preliminary investigations.
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We also experimented with other regularized linear models, including ridge re-

gression, but these had similar performance to the sparse linear model (data not shown).

Intuitions regarding fMRI responses first led us to what we call the V-SPAM model, and

then the V-iSPAM model, which in the next section we will present as instances of a single

class of models called the V-SPAM framework.

4.3 The V-SPAM Framework

Our framework for predicting the voxel response amplitude builds on two intuitions

about fMRI signals. The first is that each voxel corresponds to an approximately 2mm

cube of neural tissue, and hence any measurement at the level of a voxel reflects the pooled

activity of many neurons. Secondly, the fMRI BOLD signal is an indirect measurement of

neural activity in terms of blood flows, so that neural activity is reflected in the fMRI signal

only after being subjected to potentially nonlinear transformations.

The V-SPAM framework attempts to mimic this process by a two stage scheme.

The first stage is a biologically-inspired hierarchical filtering scheme that consists of three

distinct layers of artificial or model neurons, arranged hierarchically: simple cells, complex

cells, and linear combinations of the complex cells (here called pooled-complex cells). The

output of this filtering stage is then fed to the next “pooling” stage where transformations

are applied to a sparse subset of the filter outputs before a final summation producing a

prediction of the fMRI response. This process parallels the transformation from neural

activity to hemodynamic signals.
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4.3.1 Filtering Stage

The first two layers of the filtering stage comprise simple and complex cells, models

for which were discussed in Section 4.2.1 and Section 4.2.1 respectively.

Pooled-complex cell model

A pooled-complex cell is simply a linear combination of certain complex cells.

Let {Xj1 , . . . , Xjm} denote the activations of a set of m complex cells. The corresponding

pooled-complex cell activation Zj1,...,jk given an image I is then given by the simple linear

combination,

Zj1,...,jm(I) =
k∑

r=1

Xjr(I).

In Section 4.2.1 we saw how complex cells combine simple cells that share the same spatial

frequency, location and orientation but have differing phases, so that the resulting complex

cell is phase-invariant. We can further combine complex cells that share the same spatial

location and frequency but differ in their orientations, so that the resulting pooled-complex

cell is orientation-invariant. Figure 4.5 shows an instance of such an orientation-invariant

pooled-complex cell. While cells with such receptive fields might have direct biological

interpretation only in visual areas higher than V1, we have nonetheless included these in

order to improve the representational power of the model. The reason why these cells

improve representational power inspite of a final pooling stage will be clarified after the

description of the final pooling stage.
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complex cells

image output

Figure 4.5: Pooled-complex cell model. Subsets of complex cells that share a common
spatial location and frequency are summed.

4.3.2 Pooling Stage

In the final pooling stage a sparse subset amongst the set of all complex and pooled-

complex cell outputs are nonlinearly transformed, and then summed to model the fMRI

response Y . Let pc and pl denote the total number of complex and pooled-complex cells

in the filtering stage respectively. Denote the corresponding outputs of the model complex

cells by {X1, . . . , Xpc}, and those of the model pooled-complex cells by {Z1, . . . , Zpl}. The

fMRI response Y (I) to image I is then modeled as,

Y (I) =
pc∑

j=1

fj(Xj(I)) +
pl∑

r=1

gr(Zl(I)) + ε, (4.3.1)

where {fj}pc
j=1 and {gr}pl

r=1 are sets of unidimensional functions that have to be estimated

from data. That only a sparse subset amongst the set of all filtering stage outputs are to

be selected is captured by an additional assumption that the sets J1 = {j ∈ {1, . . . , pc} :

fj 1≡ 0} and J2 = {r ∈ {1, . . . , pc} : gr 1≡ 0} are small.

We can now see why pooled-complex cells improve the representation capacity of

the model. A nonlinear transformation of a pooled-complex cell—a linear combination of

complex cells—cannot be expressed as a linear combinations of nonlinear transformations

of individual complex cells alone. Thus the V-SPAM pooling Equation (4.3.1) can represent
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Figure 4.6: The V-SPAM model. The fMRI voxel response is modeled as the summation of
nonparametric functions of complex and pooled-complex cell outputs. The connections and
components in the dashed region are to be estimated from the data under the assumption
that many of them are null.

a function than cannot be expressed without the pooled-complex cells.

4.3.3 V-SPAM Model

The V-SPAM model is an instance of the above framework where the functions

{fj}pc
j=1 and {gr}pl

r=1 are allowed to be distinct, as shown in Figure 4.6. In Section 4.4.1,

we will describe the class of nonparametric regression models called sparse additive models

(SPAM) that model the response as an additive combination of nonparametric transfor-

mations of a sparse subset of the predictors. Thus the V-SPAM model relates the fMRI

response as a sparse additive model of complex and pooled-complex cell outputs.

4.3.4 V-iSPAM Model

If we assume the nonlinear transformations of the individual neurons are the result

of the same underlying causes, then we would at least want to constrain the individual trans-
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formations to have the same form. In the V-iSPAM model, we assume that the functions

are identical up to a scale factor and model the fMRI response Y (I) to image I as

Y (I) =
pc∑

j=1

αjf(Xj(I)) +
pl∑

r=1

βrf(Zl(I)) + ε, (4.3.2)

where f is the unidimensional function that represents the identical nonlinear transforma-

tion, while the weights {αj}pc
j=1 and {βr}pl

r=1 are individual to each model neuron. That a

sparse subset of the model neurons is selected is reflected in an additional assumption that

the set J1 = {j ∈ {1, . . . , pc} : αj 1= 0} and J2 = {r ∈ {1, . . . , pc} : βr 1= 0} are small. Thus

the individual neural responses are all transformed by the same function f , but there is a

separate scalar gain control parameter for each neural output.

In Section 4.4.2 we will describe the class of nonparametric regression models called

identical sparse additive models which model the response as a sparse additive combination

of scalings of a single nonparametric transformation of the individual predictors. Thus, the

V-iSPAM model relates the fMRI response as an identical sparse additive model of complex

and pooled-complex cell outputs. Figure 4.7 summarizes the V-iSPAM model. The only

difference from the V-SPAM model (Figure 4.6) is that the nonlinear transformations in

the final pooling stage are the same except perhaps for scale.

4.4 Some Nonparametric Regression Models

4.4.1 Sparse Additive Models

Recall that in the final pooling stage of VSPAM, we simultaneously select a sparse

subset of all predictors and learn nonparametric transformations of these selected predic-
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Figure 4.7: The V-iSPAM model. The fMRI voxel response is modeled as the summation of
nonlinear functions of complex and pooled-complex cell outputs. The nonlinear functions
share a common form. The connections and components in the dashed region are to be
estimated from the data under the assumption that many of them are null.

tors. This is precisely the setting of sparse additive models (Ravikumar et al., 2007). Sup-

pose X = (X1, . . . , Xp) ∈ Rp is a p-dimensional predictor, with marginal density functions

pX1(x), . . . , pXp(x), and Y ∈ R is a real-valued, mean 0 response. In general multivariate

nonparametric regression, the response Y is related to the predictor X as

Y = m(X) + ε,

where m : Rp 0→ R is the regression function, and ε is independent zero mean noise, for

instance ε ∼ N(0, σ2). In additive models, introduced by Hastie and Tibshirani (1999), the

regression function is constrained to be an additive combination of functions of individual

predictors,

Y =
p∑

j=1

fj(Xj) + ε,

so that fj ∈ L2(P (Xj)) is a uni-dimensional real-valued function. A sparse additive model

(SPAM) (Ravikumar et al., 2007), constrains this further by assuming that the set J =
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{j ∈ {1, . . . , p}
∣∣ fj(Xj) 1≡ 0}, of individual predictor functions that are not identically zero,

is sparse. Suppose we are given n independent observations of the predictor and response,

{(Xi, Yi)}n
i=1. In high-dimensional settings, where p is large relative to the sample size n,

estimating even linear models such as Y = β,X + ε is challenging. However when the

true coefficient vector β of the linear model is sparse, Wainwright (2006); Zhao and Yu

(2006) and others have shown that the +1 penalized least squares estimator, also called the

Lasso (Tibshirani, 1996) defined as,

β̂ = arg min
β

∑

i

(Yi − β,Xi)2 + λ
p∑

j=1

|βj |,

can estimate the linear model consistently under certain conditions even in high-dimensional

settings. Sparse additive models (Ravikumar et al., 2007) extend these sparse linear models

to the nonparametric domain.

Fitting Algorithm for Sparse Additive Models

Ravikumar et al. (2007) propose an iterative procedure to fit a sparse additive

model to data that reduces the multivariate additive regression problem to a series of one-

dimensional nonparametric regression problems. The procedure makes extensive use of

nonparametric estimators known as linear smoothers. A nonparametric estimator m̂(x) of

the regression function m(x) = E(Y |X = x) is called a linear smoother if m̂(x) is a linear

combination of the training samples Y1, . . . , Yn for each fixed x. We will assume we are

given a set of linear smoothers for regressing any response upon the individual predictors

{Xj}. Consider predictor Xj in the sparse additive model. Given any response Z ∈ R

and n samples {Z(i), X(i)
j }n

i=1, the smoothed response from a linear smoother would then
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{Z(i), X(i)
j }n

i=1, the smoothed response from a linear smoother would then
be Sj(x)Ẑ, where Ẑ is a column vector of the n samples of the response
Z and Sj(x) is a row-vector of the linear combination weights, that only
depends on the samples of the predictor Xj . With this notation, we can
summarize the sparse backfitting procedure of Ravikumar et al. [2007] for
fitting a sparse additive model to data in Figure 8.

At each iteration the algorithm cycles through the predictors. At each
predictor, it computes a residual for that predictor, nonparametrically re-
gresses the residual onto that predictor, and soft thresholds the resulting
function.

Input : Data (Xi, Yi), regularization parameter λ.

Initialize f̂j = 0, for j = 1, . . . , p.

Iterate until convergence:

For each j = 1, . . . , p:

Compute the residual Rj(X, Y, f̂j) = Y −
∑

k !=j f̂k(Xk) at the data points:

R̂j = {Rj(X
(i), Y (i), f̂j)}n

i=1.

Estimate the conditional expectation Pj = E[Rj |Xj ] by smoothing: P̂j(x) =
Sj(x) R̂j .

Set ŝ 2
j = n−1

∑n

i=1
P̂

2
j (X(i)

j ).

Soft-threshold: f̂j = [1− λ/ŝj ]+ P̂j .

Center: f̂j ← f̂j −mean(f̂j).

Output : Component functions f̂j and estimator m̂(X) =
∑

j
f̂j(Xj).

Fig 8. The SPAM Fitting Algorithm

4.2. iSPAM: Identical Sparse Additive Models. In this section, we study
a generalization of sparse additive models where the functions on the indi-
vidual predictors are constrained to be identical up to scaling. To facilitate
working with a function defined on all the predictor variables, let P̄ (X) de-
note the uniform mixture of the marginal distributions of X1, . . . , Xp. The
response Y given X1, . . . , Xp is modeled as

(4.1) Y =
p∑

j=1

αjf(Xj) + ε,

Figure 4.8: The SPAM Fitting Algorithm

be Sj(x)Ẑ, where Ẑ is a column vector of the n samples of the response Z and Sj(x) is

a row-vector of the linear combination weights, that only depends on the samples of the

predictor Xj . With this notation, we can summarize the sparse backfitting procedure of

Ravikumar et al. (2007) for fitting a sparse additive model to data in Figure 4.8.

At each iteration the algorithm cycles through the predictors. At each predictor,

it computes a residual for that predictor, nonparametrically regresses the residual onto that

predictor, and soft thresholds the resulting function.

4.4.2 iSPAM: Identical Sparse Additive Models

In this section, we study a generalization of sparse additive models where the

functions on the individual predictors are constrained to be identical up to scaling. To

facilitate working with a function defined on all the predictor variables, let P̄ (X) denote

the uniform mixture of the marginal distributions of X1, . . . , Xp. The response Y given
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X1, . . . , Xp is modeled as

Y =
p∑

j=1

αjf(Xj) + ε, (4.4.1)

where ε ∼ N (0, σ2) and f ∈ L2(P̄ (X)). So the conditional mean of Y given X is linear in

the transformed values f(X1), . . . , f(Xp). If f was fixed to be f(x) = x, this model would

reduce to the usual linear regression model. However, we assume f to be unknown.

Algorithm, Population Version

The standard optimization problem for this regression model in the population

setting is

min
α∈Rp,f∈L2(P̄ (X))

E(Y −
p∑

j=1

αjf(Xj))2,

where the expectation is with respect to the noise ε and the predictor vector X. This

optimization problem does not have a unique solution because if (α, f) is a solution then

so is (cα, c−1f) for any c 1= 0. This obstacle can be overcome by imposing constraints on

α and f . First we fix the scale of the function f by constraining the norm of f . Then

the weights {αj} serve as the scale of the effect of each predictor, and we can thus impose

sparsity on the set of active predictors by an +1 constraint on the weights {αj}. This leads

to the constrained optimization problem

inf
α∈Rp,f∈L2(P̄ (X))

E(Y −
p∑

j=1

αjf(Xj))2

s.t.
∑

j

|αj | ≤ C1

∑

j

E(f2(Xj)) ≤ C2,
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and the corresponding penalized Lagrangian form is

inf
α∈Rp,f∈L2(P̄ (X))

L(f, α;λ, µ) ≡ 1
2

E(Y −
∑

j

αjf(Xj))2

+ λ
∑

j

|αj |+
1
2
µ

∑

j

E(f2(Xj)).

(4.4.2)

For each j ∈ {1, . . . , p}, denote the residual of the identical sparse additive model

with the j-th predictor removed as Rj(X, Y, f) = Y −
∑

k -=j f(Xk). Then a solution (f∗, α∗)

of the problem Equation (4.4.2) can be characterized by the following theorem.

Theorem 4.1 (Characterization of population optima). An optimal solution (f∗, α∗) ∈

(L2(P̄ (X))×Rp) of the regularized population likelihood problem Equation (4.4.2) is a fixed

point of the following joint updates:

f(x) =
∑

j

{
αj pXj (x)

∑
k(α2

k + µ) pXk(x)

}
E(Rj |Xj = x) (4.4.3a)

α = arg min
α∈Rp

E(Y −
p∑

j=1

αjf(Xj))2 + λ
∑

j

|αj | (4.4.3b)

A closer look at the updates

The update Equation (4.4.3b) for the weights is just an +1-regularized least squares

problem. Let us now look at the updates for the function f . For each j = 1, . . . , p, let wj

denote the function

wj(x) =
αj pXj (x)

∑p
k=1(α

2
k + µ) pXk(x)

.

Then ((4.4.3a)) can be rewritten as,

f(x) =
p∑

j=1

wj(x) E(Y −
∑

k -=j

αkf(Xk)|Xj = x). (4.4.4)
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Linear combination of backfitted functions Consider the classical additive model,

Y =
∑

j fj(Xj)+ε. Hastie and Tibshirani (1999) proposed the following iterative algorithm,

called backfitting, for solving the corresponding least squares problem in the population

setting. They proposed iterating over the predictors j = 1, . . . , p with the update,

fj(x) ← E(Y −
∑

k -=j

fk(Xk)|Xj = x).

Comparing this with equation Equation (4.4.4), we see that the function update is equiv-

alent to a two-staged procedure that first computes distinct backfitted functions at each

predictor, as with vanilla additive models, and then sets the function f to a weighted lin-

ear combination of these individual predictor functions. Thus denoting f̃j(x) = E(Y −

∑
k -=j αkf(Xk)|Xj = x), the function update Equation (4.4.4) can be written as

f(x) =
p∑

k=1

wj(x) f̃j(x), (4.4.5)

whereas vanilla backfitting would merely compute the functions f̃j at each predictor Xj .

Convergence of the function updates The update from equation Equation (4.4.4) can

be rewritten as

f(x) =
p∑

j=1

wj(x)E(Y |Xj = x)−
p∑

k=1

∑

j -=k

wj(x)αkE(f(Xk)|Xj = x). (4.4.6)

Let b ∈ L2(P̄ (X)) denote the function b(x) =
∑p

j=1 wj(x)E(Y |Xj = x). For each j, k ∈

{1, . . . , p}, j 1= k, let Pjk : L2(P̄ (X)) 0→ L2(P̄ (X)) be the linear operator defined as

(Pjkf)(x) = E(f(Xk)|Xj = x). With this notation, equation Equation (4.4.6) can be



79

written as,

f = b−
p∑

k=1

αk(
∑

j -=k

wjPjk)f

= b−Af,

where A : L2(P̄ (X)) 0→ L2(P̄ (X)) is the linear operator A =
∑p

k=1 αk(
∑

j -=k wjPjk). Note

that if f (0) = 0, and f (t+1) = b−A f (t), it follows by induction that

f (t) =
t−1∑

j=0

(−1)jAj b.

We prove in the Appendix that

Lemma 4.2. For all f ∈ L2(P̄ (X))

∫
|(Af)(x)|2P̄ (dx) <

p||α||2

µ

∫
|f(x)|2P̄ (dx)

and so A is a contraction if µ > p||α||2.

Thus, if we set µ large enough so that µ > p||α||2, then (I + A) is non-singular

and

f (t) = (I +A)−1(I − (−1)tAt)b → (I +A)−1b

in L2(P̄ (X)) as t → ∞. So the iterates f (t) converge to the solution of the linear system

f = b−Af .

4.4.3 Empirical iSPAM Algorithm

Theorem 4.1 derives the true function f and the weights α as fixed points of a set

of updates. However these updates depend on population quantities such as expectations
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with respect to the population distribution, and the true predictor densities. Given samples

{(X(i), Y (i))}n
i=1, we can then formulate a data version of these updates by plugging in

sample-based counterparts of these population quantities. Thus, we estimate the conditional

expectation of the j-th residual Rj(X,Y, f̂) = Y −
∑

k -=k α̂j f̂k(Xk) given the j-th predictor,

E(Rj |Xj), by smoothing. Let R̂j = (Rj(X(1), Y (1), f̂), . . . ,Rj(X(n), Y (n), f̂))T be a column

vector of the j-th residual evaluated at the data points. Then as in Section 4.5, assuming

the smoother for predictor Xj is a linear smoother and denoting Sj(x) as the row-vector

of the smoother weights that only depend on the samples of the predictor Xj , we estimate

E(Rj |Xj = x) by Sj(x) R̂j . We estimate the density pXj (x) of the j-th predictor from the

samples by any unidimensional density estimator, p̂Xj (x). For instance, the kernel density

estimate with kernel K and bandwidth h is given as

p̂Xj (x) =
1

n h

n∑

i=1

K

(
X(i)

j − x

h

)
.

Finally, for the update Equation (4.4.3b) of the weights α, collect F̂j = {f̂(X(i)
j )}n

i=1,

the function estimates at each predictor, as columns of a design matrix F̂ . Let Ŷ =

(Y (1), . . . , Y (n))T . Plugging in the empirical for the population expectation in the up-

date Equation (4.4.3b), we then obtain α as,

α = arg min
α∈Rp

(Ŷ − F̂α)2 + λ | α | 1,

which is an instance of the Lasso (Tibshirani, 1996) with design matrix F̂ , response vector

Ŷ and penalty λ. Figure 4.9 gives the final data version of the updates Equation (4.4.3).
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NONPARAMETRIC SPARSE MODELS FOR V1 FMRI 17

Input : Data {(X(i), Y (i))}n
i=1, regularization parameters λ, µ.

Initialize f̂ = 0. For j = 1, . . . , p,

Set weight α̂j = 1, and

Estimate the density pXj (x) by a unidimensional density estimator: p̂Xj (x).

Iterate until convergence:

Optimize for f̂ :

Iterate until convergence:

For each j = 1, . . . , p:

Compute the residual Rj(X, Y, f̂) = Y −
∑

k !=k α̂j f̂k(Xk) at the data
points:

R̂j = {Rj(X
(i), Y (i), f̂)}n

i=1.

Estimate the conditional expectation Pj = E[Rj |Xj ] by smoothing:
P̂j(x) = Sj(x) R̂j .

Set f̂(x) =
∑p

j=1

{
α̂j p̂Xj

(x)∑p

k=1
(α̂2

k
+µ) p̂Xk

(x)

}
P̂j(x).

Optimize for α:

Collect F̂j = {f̂(X(i)
j )}n

i=1, the function estimates at each predictor, as

columns of a design matrix F̂ .

Solve α̂ = Lasso(Ŷ , F̂ , λ).

Output : Common function f̂ and weights {α̂j}.

Fig 9. The iSPAM Fitting Algorithm

positioned evenly on a ω × ω grid covering the image. All combinations of
the 8 orientations and 2 phases occured at each of the ω×ω positions. In to-
tal, the Gabor wavelet pyramid consisted of 21,840 wavelets plus 1 constant
wavelet providing an intercept term for the model.

Using these wavelets, we constructed model simple and complex cells ac-
cording to equations (2.2) and (2.3) respectively thus obtaining 10,921 model
complex cells. Recall the intuition behind the sparsity assumption in our
models, which was based on the empirical observation that the response at
any voxel is receptive to stimuli in a small spatial region, so that among the
set of all complex cells the active set at any voxel would be small. We thus
performed an intermediate pre-screening in order to eliminate complex cell
outputs unrelated to a voxel response, and also to reduce the computational
complexity of successive stages of fitting. We computed the correlation of the
response of each complex cell with the evoked voxel response, using the 1,750

Figure 4.9: The iSPAM Fitting Algorithm
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4.5 Fitting

The previous sections described our V-SPAM and V-iSPAM models, and algo-

rithms to fit these to data. Here, we provide further specifics on how we fit these models

to our dataset.

A separate V-SPAM model was fit at each of the 1,294 voxels using the training

set of 1,750 images and the evoked fMRI response amplitudes. Recall how the artificial

neuron models in the filtering stage of the V-SPAM model were based on Gabor wavelets.

We constructed a pyramid of these wavelets according to equation Equation (4.2.1), using

five different spatial frequencies, 8 orientations and 2 phases on a grid of size 128 × 128

pixels. The wavelets were centered and scaled to have mean 0 and norm 1. At each of

the spatial frequencies ω ∈ {1, 2, 4, 8, 16, 32} cycles per field of view, the wavelets were

positioned evenly on a ω×ω grid covering the image. All combinations of the 8 orientations

and 2 phases occured at each of the ω × ω positions. In total, the Gabor wavelet pyramid

consisted of 21,840 wavelets plus 1 constant wavelet providing an intercept term for the

model.

Using these wavelets, we constructed model simple and complex cells according to

equations Equation (4.2.2) and ((4.2.3)) respectively thus obtaining 10,921 model complex

cells. Recall the intuition behind the sparsity assumption in our models, which was based

on the empirical observation that the response at any voxel is receptive to stimuli in a small

spatial region, so that among the set of all complex cells the active set at any voxel would

be small. We thus performed an intermediate pre-screening in order to eliminate complex

cell outputs unrelated to a voxel response, and also to reduce the computational complexity
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of successive stages of fitting. We computed the correlation of the response of each complex

cell with the evoked voxel response, using the 1,750 images in the training set, and retained

only the top k complex cells for each voxel. In pilot studies we found empirically that

k = 100 was enough to give good statistical and computational performance (data not

shown). Using this reduced number of complex cells, we constructed orientation invariant

pooled-complex cells as described in Section 4.3.1.

With these neuronal filters in place, the V-SPAM model was then fit using the

sparse additive model fitting algorithm in Figure 4.8. Given any image, the corresponding

outputs of the model neurons were the predictors of the sparse additive model, while the

evoked voxel response amplitude was its response. The 1,750 images and evoked fMRI

responses in the model estimation dataset thus provided 1,750 training samples for the

sparse additive model. The sparse additive model fitting algorithm also required as input

two other quantities: a smoother (Sj in Figure 4.8) and a regularization parameter λ. We

used the Gaussian kernel smoother with plug-in bandwidth, and chose λ according to the

Akaike information criterion (AIC).

Similarly, the V-iSPAM model was fit using the iSPAM fitting algorithm and the

1,750 training samples of the neuronal filter outputs and the corresponding fMRI response

amplitudes. The fitting algorithm required as input two regularization parameters λ and

µ. The µ parameter effectively fixes the scale of the function, but must be large enough

to ensure convergence of the function updates, as was shown in Lemma 4.2. We found

that fixing it to 0.5 was enough to ensure numerical convergence across all voxels. We

set the +1-regularization penalty λ by five-fold cross-validation. Finally, the iSPAM fitting
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algorithm also required as input a unidimensional density estimator, for which we used

the kernel density estimator, with the Gaussian kernel and plug-in bandwidth. For the

unidimensional smoothing procedures, as before we used Gaussian kernel regression.

For comparison, we used the same data to fit a sparse linear pooling model. As de-

scribed in Section 4.2, a linear pooling model aims to predict each voxel’s response as a linear

combination of all 10,921 complex cell outputs. This model, with the fixed transformation

h(t) =
√

t, was used in earlier work with this data set (Kay et al., 2008). As benchmark,

we used a sparse variant of this model with the fixed transformation h(t) = log(1 +
√

t).

The selection of this transformation was supported by investigations performed after (Kay

et al., 2008) that indicated a slight improvement over the earlier results. The coefficients

of the model were estimated by L2 Boosting (Bühlmann and Yu, 2003) with the stopping

criterion determined by 5-fold cross-validation.

4.6 Results

For each voxel, we evaluated the fitted V-SPAM and V-iSPAM models by com-

puting the predictive R2 (squared correlation) of the predicted and actual fMRI responses

evoked by each of the 120 images in the validation set.

4.6.1 Prediction

Figure 4.10(a) shows scatterplots comparing the performance of the three fitted

models on the validation dataset. Both the fitted V-SPAM and the fitted V-iSPAM models

are seen to provide a large improvement over the sparse linear model for many of the voxels.
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The inset region in the scatterplots contains the voxels for which both models had some

predictive power (R2 ≥ 0.1). For those voxels, the average relative improvement of the

non-parametric models over the sparse linear model was about 14% (standard deviation

14%) for V-SPAM and 16% (standard deviation 21%)for V-iSPAM. Figure 4.10(b) shows

histograms of the relative improvement across voxels for each of the 3 comparisons.

The fitted V-SPAM and fitted V-iSPAM models have comparable predictive power.

On average the latter has a slight edge over the former with an mean relative improvement

of 5.6% (standard deviation 16%) on voxels with some predictive power. This may be due

to additional regularization provided by the identical nonlinearity constraint of the iSPAM

fit. However, the right-most scatterplot in Figure 4.10(a) shows that there are a few voxels

where the fitted V-iSPAM model predicts very poorly compared to V-SPAM.

4.6.2 Nonlinearities

One of the potential advantages of the V-SPAM model over other approaches is

that it can reveal novel nonlinear tuning and pooling properties. Figure 4.11(a) illustrates

some of these functions estimated for a typical voxel with high predictive power (R2 of

0.63). These correspond to the nonlinearities appearing in the final stage of the V-SPAM

model (see Figure 4.6).

Here the horizontal axis is the input in standard units of the corresponding model

complex or pooled-complex cell outputs, and the vertical axis is the output in standard

units of predicted responses. For this voxel, these are the 4 largest (ranked by L2 norm)

nonlinearities. All four of these nonlinearities are compressive, that is they saturate and
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Figure 4.10: Comparisons of the predictive power of the 3 different fitted models. (a) Scat-
terplot of the predictive R2 on the validation dataset for each of 1,294 voxels. The V-SPAM
and the V-iSPAM models have similar prediction performance, and provide improvement
over the sparse linear model for many of the voxels. (b) Relative performance (calculated
as the ratio of the predictive R2’s minus 1) for the voxels contained in the inset regions in
(a).
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become less responsive to the input after a certain threshold. Figure 4.11(b) shows the

nonlinearity estimated for the fitted V-iSPAM model for the same voxel. This too has a

saturating form. The estimated nonlinearities had similar forms across voxels. Figure 4.12

shows transformations at ten other voxels with high predictive power as estimated by the

V-iSPAM model.

4.7 Qualitative Aspects

4.7.1 The Saturation Effect

The standard models for simple and complex cells in Section 4.2.1 and Section 4.2.1

only capture a simplified version of actual neural behavior. For instance, Maffei and Fioren-

tini (1973) showed that simple cell outputs exhibit saturation with increasing input light

intensities. Movshon et al. (1978b) and others have shown, complex cells exhibit nonlin-

earities and saturative behavior as well. Interestingly, as shown in the previous section the

nonlinear transformations of the standard complex cell outputs, automatically learned in

the pooling stage, were saturating as well. This indicates that previous fixed transforma-

tions, e.g. h(t) = log(1 +
√

t) is not compressive enough. However, due to the nature of the

fMRI BOLD signal it is difficult to determine if this is an effect of nonlinearity in the electro-

physiological transformation from image stimulus to neuronal output, or the transformation

from neuronal output to BOLD signal. In either case, it is plausible that the saturation in

the estimated nonlinearity reflects the fact that neural activity consumes resources in the

brain and that it is impossible for the activation to be potentially unbounded, as would be
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Figure 4.11: Estimated nonlinearities for a voxel with high predictive power (R2: 0.63).
(a) The 4 largest (ranked by L2 norm) are shown left to right by the thick lines. The grey
lines in the rightmost figure show the rest of nonlinearities. (b) The nonlinearity estimated
by the V-iSPAM model for the same voxel (plotted with unstandardized inputs). A rug
plot of the corresponding X ′

is from the training set is plotted along the x-axis.
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suggested by a linear relationship.

4.7.2 Estimated Receptive Fields and Tuning Curves

Figure 4.13 shows the spatial receptive-fields (RF’s) and joint frequency and ori-

entation tuning curves estimated using the V-iSPAM model for 3 voxels. These voxels were

chosen because they had high predictive power (R2’s of 0.65, 0.59, and 0.63, respectively

from left to right) and so were modeled accurately. The upper row of the figure shows the

spatial RF of each voxel. The intensity at each location in the spatial RF represents the

standardized predicted response of the voxel to an image stimulus consisting of a single

pixel at that location. The spatial RF’s of these voxels are clearly localized in space, con-

sistent with the known retinotopic organization of V1 and previous fMRI results (Wandell

et al., 2007). The lower row of Figure 4.13 shows the joint frequency and orientation tuning

properties of these same 3 voxels. Here the tuning curves were estimated by computing

the predicted response of the fitted voxel model to cosine gratings of varying orientation

(degrees) and spatial frequency (cycles/field of view). All of the voxels are tuned to spatial

frequencies above about 8 cycles/field of view, while orientation tuning varies from voxel

to voxel. The joint spatial frequency and orientation tuning of all 3 voxels appears to be

non-separable (i.e. their orientation tuning is not a constant function of frequency). The

tuning curves for the V-SPAM model were similar and are not shown.
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Figure 4.12: Non-linearities estimated by the V-iSPAM model for ten other voxels with
high predictive power.
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Figure 4.13: (upper) Spatial receptive-fields (RF’s) and (lower) joint frequency and ori-
entation tuning curves estimated by the V-iSPAM model for 3 voxels with high predictive
power (R2’s of 0.65, 0.59, 0.63, left to right). Each location in the spatial RF shows the
standardized predicted response of the voxel to an image consisting of a single pixel at that
location. The tuning curves show the standardized predicted response of the voxel to cosine
gratings of varying orientation (degrees) and spatial frequency (cycles/field of view).
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4.7.3 Flat Map

The V-SPAM framework models the fMRI response at each voxel separately. How-

ever, voxels are located in space and properties and it is of potential interest to determine

whether the fitted models reflect the proximity of voxels in any properties. The surface of

the brain is actually a convoluted surface–like a deflated beachball, and so a notion of voxel

proximity should take this into account.

Flat maps provide a two-dimensional view of the surface of the brain Kay et al.

(2008) and can be used for visualizing properties of the fitted voxel models. In the construc-

tion of a flat map, anatomical MRI data are acquired from the subject, and then specialized

algorithms are used to reconstruct the cortical surface of each subject. The cortical surfaces

are then computationally flattened before projecting data onto the surface. One basic prop-

erty of the fitted voxels is their predictive R2. Figure 4.14(a) shows these values projected

onto the flat map. The smooth gradation of color indicates that nearby voxels have similar

predictive power.

Another property of a fitted voxel provided by V-iSPAM model is the single func-

tion that is identical across predictor variables. The variation of these functions across the

cortical surface is of potential scientific interest. One summary of the function is its mean

derivative. To make this summary comparable across voxels, we standardized the fitted

functions to have SD 1 for each voxel. The derivatives of the function can then be esti-

mated using standard curve-fitting tools. We used smoothing splines with the smoothness

parameter chosen by cross-validation. The mean derivative was then estimated by averaging

over the aggregate of the active predictor variables in the training set. Figure 4.14(b) shows
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the absolute value of the estimated mean derivative of the functions. There are similarities

with Figure 4.14(a), however the gradation of values seems to be much smoother for the

mean slope.

Both flat maps suggest that proximity does play a role in the properties of the

voxel. Taking proximity into account, i.e. borrowing strength, in the fitting could be fruitful

topic of investigation in the future.

(a) Predictive R2 (b) Estimates of |
R

f ′(x)dP̄ (x)|

Figure 4.14: Flat map
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4.8 Additional Details

Let Y (t) ∈ R denote the fMRI time-series signal. Let Let hi(t) denote the hemo-

dynamic response function for the i-th image stimulus. And let Xi(t) be the delta function

indicating whether the trial at time t is showing the image i. (Recall that the same image

is shown more than once over the sequence of image trials.) Let D(t) and ε(t) denote the

drift and the noise terms respectively. Finally, let A(t) ∗B(t) denote the convolution of the

series A(t) and B(t). With this notation, the fMRI signal Y (t) is modeled as,

Y (t) =
n∑

i=1

Xi(t) ∗ hi(t) + D(t) + ε(t),

where n is the number of distinct images. The basis-restricted separable model assumes

further that the hemodynamic response functions have the same form except for scale, so

that hi(t) = ci h(t), for i = 1, . . . , n. Thus the weight ci ∈ R is distinct for each image while

h(t) ∈ R as the form of the hemodynamic response function is common to all images. This

common form h(t) in turn is modeled as a linear combination of Fourier basis functions

(consisting of a constant function and sine and cosine functions with 1, 2, and 3 cycles),

h(t) =
nh∑

j=1

pjLj(t),

where nh is the number of Fourier basis functions, and {pj}nh
j=1 are their coefficients. The

drift term is steady enough to be modeled as a linear combination of polynomial functions

(of degrees 0 through 3),

D(t) =
nd∑

k=1

bkSk(t),
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where nd is the number of polynomial regressors and {bk}nd
k=1 are their coefficients. Com-

bining the pieces, the fMRI signal Y (t) is given as,

Y (t) =
n∑

i=1

Xi(t) ∗
(
ci

nh∑

j=1

pjLj(t)
)

+
( nd∑

k=1

bkSk(t)
)

+ ε(t).

Once the parameters {ci}n
i=1, {pj}nh

j=1, {bk}nd
k=1 are fit to the observed fMRI signal

Y (t), we obtain a distinct hemodynamic response amplitude ci ∈ R for each image stimulus

at each voxel. Further details of this preprocessing can be found in Kay et al. (2008).

4.9 Proofs

Theorem 4.1

Proof. Consider optimizing problem (4.4.2) over the function f while holding the scale

parameters α fixed. A first order expansion of the objective L around some f ∈ L2(P ())

with increment εη ∈ L2(P ()) is given as,

L(f + εη) = L(f) + ε
∑

j

E
[
(α2

j + µ)f(Xj)− αjRj)η(Xj)
]
+ O(ε2).

The first variation of L around f in the direction of η can thus be written as

∂L(f ; η) = lim
ε→0

[L(f + εη)− L(f)]/ε

=
∑

j

E
{
[(α2

j + µ)f(Xj)− αjRj ]η(Xj)
}

=
∑

j

∫ {
(α2

j + µ)f(x)− E(αjRj |Xj = x)
}

η(x)P (Xj = x)dx

=
∫





∑

j

{
(α2

j + µ)f(x)− E(αjRj |Xj = x)
}

P (Xj = x)




 η(x)dx,
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which is linear in the increment η. Note that L2(P ()) has the inner-product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx.

The Fréchet derivative of L at f is thus given by

∂L(f)(x) =
∑

j

{
(α2

j + µ)f(x)− E(αjRj |Xj = x)
}

P (Xj = x),

since the first variation can be written as ∂L(f ; η) = 〈∂L(f), η〉. Setting the derivative to

zero yields the following stationary condition:

f(x) =
∑

j αjE(Rj |Xj = x)P (Xj = x)
∑

j(α2
j + µ)P (Xj = x)

. (4.9.1)

Now consider optimizing the objective (4.4.2) over α, while holding f fixed. This

is just an +1-regularized least squares problem, where the predictors are transformed by the

function f . Thus the optimal scale parameters α when f is fixed would satisfy

α = arg min
α∈Rp

E(Y −
p∑

j=1

αjf(Xj))2 + λ
∑

j

|αj |. (4.9.2)

The optimal solution (f∗, α∗) satisfies these two stationary conditions (4.9.1),

((4.9.2)), and equivalently is a fixed point of the updates in the theorem.

Lemma 4.2

Proof. Let W (x) =
∑

k(α
2
k + µ)pXk(x) and fix µ > 0 and x such that the density of P̄ is

positive at x.

|(Af)(x)|2 =
1

[W (x)]2




∑

k

αk

∑

j -=k

αjpXj (x)(Pjkf)(x)




2

≤ 1
[W (x)]2




∑

jk

|αkαjpXj (x)(Pjkf)(x)|




2

.
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Applying the Cauchy-Schwarz inquality to the sum over jk, and then Jensen’s Inequality

gives

|(Af)(x)|2 ≤ ||α||2
∑

j α2
jpXj (x)

[W (x)]2
∑

jk

pXj (x)|(Pjkf)(x)|2

≤ ||α||2
∑

j α2
jpXj (x)

[W (x)]2
∑

jk

pXj (x)(Pjkf
2)(x).

Note that W (x) =
∑

k(α
2
k + µ)pXk(x) >

∑
k α2

kpXk(x) and so

|(Af)(x)|2 <
||α||2∑

k(α2
k + µ)pXk(x)

∑

jk

pXj (x)(Pjkf
2)(x)

≤ ||α||2

µ
∑

k pXk(x)

∑

jk

pXj (x)(Pjkf
2)(x).

Combine this with the definitions of P̄ and Pjk to conclude that

∫
|(Af)(x)|2 P̄ (dx) =

1
p

∫
|(Af)(x)|2

∑

k

pXk(x) dx

<
1
p

||α||2

µ

∑

j

∑

k

∫
pXj (x)E(f2(Xk)|Xj = x) dx

= p
||α||2

µ

∫
|f(x)|2P̄ (dx).
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Chapter 5

High Dimensional Analysis of

Ridge Regression

5.1 Introduction

Consider the linear model

Y = Xβ + ε (5.1.1)

where X = ZΣ1/2 is a n × p matrix of predictors with EX = 0, EXT X = Σ, and ε is a

noise vector whose coordinates are i.i.d. with mean 0 and variance σ2. The least squares

estimate of β,

β̂ols = (XT X)−1XT Y ,

is known to be unstable—its value can change dramatically with small perturbations of

Y —when the columns of X are highly colinear (Hoerl and Kennard, 1970). Moreover, it

becomes invalid if p > n; for example, in the preceding chapter we considered n = 1, 331
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natural images and p = 10, 921 features for each of the n images.

Ridge regression was introduced by Hoerl and Kennard (1970) to address the

estimation of β in the highly colinear setting. Its roots are in chemometrics, but it is also

related to work in numerical analysis due to Tikhonov (1943). The ridge regression estimate

of β is given by,

β̂ridge = (XT X + kI)−1XT Y ,

and corresponds to the penalized least squares problem,

min
b
||Y −Xb||2 + kbT b .

Thus, it modifies the ordinary least squares criterion by adding a penalty on the size of the

coordinates of b. Larger k’s encourage solutions with smaller norms ||b||2.

Hoerl and Kennard (1970) proved a ridge existance theorem which guarantees the

existence of a k such that the mean squared estimation of ridge regression is smaller than

that of ordinary least squares. That is, there exists k such that

E||β̂ridge − β||2 < E||β̂ols − β||2 .

Unfortunately, their theorem does not show how to choose such a k on the basis of the data,

nor does it guarantee that a data based selection of k will be successful. That deficiency was

one source of much of the early criticism of ridge regression (see Conniffe and Stone (1973)

for example). More recent studies have shown that cross-validation can be a successful

strategy for choosing k, but care must be taken (Burr and Fry, 2005). Another troubling

aspect was that unlike β̂ols, the ridge estimate is no longer equivariant under rescaling of

X. Smith and Campbell (1980) attributed this to the fact that β̂ridge is a Bayes estimate
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with an implicit prior. So it should not be surprising that rescaling X leads to different

implicit prior distributions for β. Much of the research on ridge regression during the 1970s

is summarized by Draper and van Nostrand (1979).

Power ridge regression was suggested in chemometrics (Sommers, 1964) and in-

troduced into the statistics literature by Goldstein and Smith (1974). The power ridge

estimate of β is given by,

β̂power := [XT X + k(XT X)q]−1XT Y , (5.1.2)

where the power q can be any number. It includes ridge regression as a special case with

q = 0. It was dismissed by Hoerl and Kennard (1975) as “unfruitful,” and yet has come back

in more recent literature (Frank and Friedman, 1993; Obenchain, 1995; Burr and Fry, 2005).

The works of Gibbons (1981) and Obenchain (1995) are interesting because they explicitly

considered the problem of selecting q using the data, whereas Frank and Friedman (1993)

had considered it fixed a priori. The simulation results of Burr and Fry (2005) suggest that

selection of q from a few candidates by cross-validation can be successful.

5.2 Generalized Ridge Regression

Replacing the penalty βT β in ridge regression by a general quadratic penalty bT Gb,

with G ≥ 0 (G non-negative definite), leads to the penalized least squares problem,

min
b

{
||Y −Xb||2 + kbT Gb

}
. (5.2.1)

Note that whereas ridge regression is invariant under rotation of X, generalized ridge re-

gression is in general not, because the matrix G allows for the possibility of anisotropic
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penalization of b. Ridge regression is a special case with G = I. Another special case

is given by G = (XT X)q. In that case G is stochastic and different choices of q lead to

different members of the power ridge family of estimators.

5.2.1 Duality of Penalization and Transformation

A related family of estimators is given by the penalized least squares problem,

min
b

{
||Y −XCb||2 + k||b||2

}
, (5.2.2)

where C is a non-negative definite matrix. Equation (5.2.1) and Equation (5.2.2) are equiv-

alent when G and C are restricted to be positive definite (or simply positive) via the

mapping C = G−1/2. Actually, Equation (5.2.2) is just ridge regression with the (linearly)

transformed predictors,

X̃ = XC .

This makes Equation (5.2.2) more useful to work with because it allows for the possibility

of dimension reduction of the predictors in addition to anisotropic penalization of b. For

example, C could be the composition C = HG−1/2, where H is a dimension reducing

projection and GB is a positive definite penalty matrix as in Equation (5.2.1). (For brevity,

we will refer to positive definite matrices as positive and similarly for non-negative definite

matrices.)

Since Equation (5.2.2) is equivalent to ridge regression with the transformed predic-

tor X̃, its solution in terms of the original predictor (in the linear model of Equation (5.1.1))

is given by

β̂ = C(X̃T X̃ + kI)−1X̃T Y = C(CT XT XC + kI)−1CT XT Y .
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Dual Form If k > 0 or if X̃X̃T is non-singular, then we can write β̂ in dual form as,

β̂ = CX̃T (X̃X̃T + kI)−1Y = AXT (XAXT + kI)−1Y , (5.2.3)

where A = CCT . This can be seen by considering the singular value decomposition of X̃.

Saunders et al. (1998) gave a formal derivation from an optimization point of view and con-

sidered Equation (5.2.3) as a starting point for the kernelization of ridge regression. (They

proposed replacing X̃X̃T by an arbitrary kernel matrix). Moreover, the dual form of ridge

regression can be computationally more time and space efficient than the standard form

when p ! n because Equation (5.2.3) can be solved for different values of k simultaneously

by computing the singular value decomposition of an n × n matrix, rather than a p × p

matrix; while the predicted value at a point x̃ = xC is given (via some algebra) by the

equation

xβ̂ = x̃X̃T (Y − X̃β̂)/k .

Thus, the prediction equation is determined by an n-vector of inner products x̃X̃T and the

n-vector of residuals Y −Xβ̂.

5.2.2 Elliptical Constraints and the Choice of Penalty/Transformation

There is a natural correspondence between non-negative A and ellipsoids in Rp.

Associated to each b ∈ Rp is the rank 1 matrix bbT . Then the set {b : bbT ≤ A} is a

(solid) ellipsoid in Rp. When A is non-singular it is equivalent to {b : bT A−1b ≤ 1}. The

principal axes of the ellipsoid are given by the eigenvectors of A and the squared radii by the

eigenvalues of A. We will occasionally abuse notation by referring to A as both a matrix and

as an ellipsoid. The penalized least squares problem (Equation (5.2.1)) corresponds to the
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Lagrangian form of a least squares problem with the elliptical constraint b ∈ {b : bbT ≤ cA}

for some c > 0. In that context, generalized ridge regression also appeared in the work

of Kuks and Olman (1971, 1972). They considered the estimation of the one-dimensional

parameter aT β under the meansquared error E[(aT β̂− aT β)2 | X] subject to the constraint

that ββT ≤ A/σ2.

Clearly, the choice of A has an effect. For example, the choice of q in power ridge

regression (Equation (5.1.2)) corresponds to choosing A from the family {(XT X)−q : q}.

There q = 0 corresponds to a sphere, while q 1= 0 correspond to proper ellipsoids provided

XT X is not a multiple of the identity. As q decreases to −∞, the major axes of (XT X)−q

expand while its minor axes shrink—producing increasingly eccentric ellipsoids. The same

is true as q increases to +∞, except the role of the major and minor axes switches.

So different choices of q can lead to dramatically different ellipsoids. However,

it is not immediately clear whether different ellipsoids will lead to dramatically different

estimates. Furthermore, it would be useful to understand what properties are desirable for

A. These concerns are addressed in the next section.

5.3 Prediction Error

Let us fix the notation in this section, taking A = CCT as in Equation (5.2.3),

and define the generalized ridge estimator in dual form as

β̂(k,A) := AXT (XAXT + kI)−1Y . (5.3.1)

We are interested in the mean squared prediction error,

mspe(k,A, β) := E{||Xβ̂(k,A) −Xβ||2 | X},
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that depends on the unknown parameter β. To understand the effect of the choice of A,

consider the worst case error when β belongs to the ellipsoid B,

MMSPE(k,A, B) := max
β:ββT≤B

mspe(k, A, β) .

We will analyze MMSPE(k,A, B) as k, A, and B vary.

5.3.1 Bias and Variance Decomposition

The mean squared prediction error has a well-known bias-variance decomposition.

Firstly, we can expand the error Xβ̂(k,A) −Xβ in the following way.

Xβ̂(k,A) −Xβ = XAXT (XAXT + kI)−1(Xβ + ε)−Xβ

= −k(XAXT + kI)−1Xβ + XAXT (XAXT + kI)−1ε .

The first term on right hand side of the last line is related to the bias of β̂(k,A), while the

second term is related to the variance. Since ε has mean 0 and is independent of X, the

squared bias and variance are given by

||E{Xβ̂(k,A) −Xβ)|X}||2 = k2 tr
{
(XAXT + kI)−2XββT XT

}

and

E{||Xβ̂(k,A) − E(Xβ̂(k,A)|X)||2 | X} = σ2 tr
{
(XAXT + kI)−2(XAXT )2

}
,

respectively. Thus, the mean squared prediction error is

mspe(k, A, β) = k2 tr
{
(XAXT + kI)−2XββT XT

}

+ σ2 tr
{
(XAXT + kI)−2(XAXT )2

}
.

(5.3.2)
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5.3.2 MSPE under Ideal Conditions

When B is known, we may choose A = B and hope that MMSPE(k,A, A) is small.

The following theorem gives a lower bound for MMSPE in this ideal setting.

Theorem 5.1.

min
k

MMSPE(k,A, A) ≥ σ2 tr
{
(XAXT + σ2I)−1(XAXT )

}
. (5.3.3)

The quantity in the lower bound in the theorem appears in Bayesian analysis.

When β has a N (0, A−1) prior distribution and ε is also N (0, σ2I), then the posterior

variance of Xβ given (X, Y ) is equal to the above upper bound. However, in our current

setting ββT ≤ A and so the N (0, A−1) prior does not apply. Interestingly, the lower bound

depends only on the eigenvalues of XAXT . In a later section we will use a result in random

matrix theory to show that under certain assumptions on X it really only depends on the

eigenvalues of Σ1/2AΣ1/2.

5.3.3 MSPE under Misspecification

What is the effect of the choice of A on the mean squared prediction error when

A 1= B? The following theorem gives upper and lower bounds on MMSPE that depend

on a geometric relationship between the ellipsoids A and B. To make this more clear, we

reparameterize the regularization parameter k as k = σ2/α to make this more clear. It

includes Theorem 5.1 as a special case.
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Theorem 5.2. Let k = σ2/α.

I. Assume that A > 0. If α > 0 then

MMSPE(σ2/α, A, B) ≤ σ2 tr
{
(XAXT + (σ2/α)I)−1(XAXT )

}

+ σ2 tr
{
[B(Aα)−1 − I]+

}
(5.3.4)

and

MMSPE(σ2/α, A, B) ≥ σ2 tr
{
(XAXT + (σ2/α)I)−1(XAXT )

}

− σ2 tr{[B(Aα)−1 − I]−} ,

(5.3.5)

where tr{[(·)]+} (resp. tr{[(·)]−}) denotes the sum of the absolute values of the positive

(resp. negative) eigenvalues of the matrix (·).

II. Assume only that A ≥ 0.

• If α ≥ α∗ = inf{α : B ≤ Aα} then

MMSPE(σ2/α, A, B) ≤ σ2 tr
{
(XAXT + (σ2/α)I)−1(XAXT )

}
. (5.3.6)

• If α ≤ α∗ = sup{α : Aα ≤ B} then

MMSPE(σ2/α, A, B) ≥ σ2 tr
{
(XAXT + (σ2/α)I)−1(XAXT )

}
. (5.3.7)

The geometric interpretation of α, α∗, and α∗ is illustrated in Figure 5.1. The

inequalities in the theorem are sharp, because if A = B and α = 1 then the lower and

upper bounds coincide. In fact that shows that there is actually equality in Theorem 5.1.

There are two parts to the bounds. The first part measures the size of A, while the second

measures the distance from A to B.
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B

Aα∗Aα∗

Figure 5.1: Ellipsoids in Theorem 5.2. Aα∗ is the smallest ellipsoid in the 1-dimensional
family {Aα : α ≥ 0} containing the ellipsoid B, while Aα∗ is the largest contained in B.
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5.3.4 Evaluation of the MSPE bounds with Random Matrix Theory

The prediction bounds depend on the function,

V(Q, s) := tr
{
(sXQXT + I)−1(XQXT )

}
,

where Q ≥ 0 and s ≥ 0. V(Q, s) depends only on the eigenvalues of XQXT . Let λi(XQXT )

denote the eigenvalues of XQXT , and define the empirical spectral distribution of XQXT

to be the empirical distribution FQ
n of the eigenvalues. That is, let

FQ
n (x) :=

1
n

∑

x

1{λi(XQXT )≤x} .

Then

V(Q, s) =
∫

x

1 + sx
dFQ

n (x) .

So the lower bound in Theorem 5.1 is

min
k

MMSPE(k,A, B) ≥ V(A, 1/σ2) .

While the upper and the lower bounds in Theorem 5.2 can be written as

MMSPE(σ2/α, A, B) ≤ V(Aα, 1/σ2) + σ2 tr{[B(Aα)−1 − I]+}

and

MMSPE(σ2/α, A, B) ≥ V(Aα, 1/σ2)− σ2 tr{[B(Aα)−1 − I]−} ,

respectively.

Random matrix theory can be used to evaluate V(Q, s) under some conditions on

X and Q. The following is derived from a reformulation of a result of Silverstein (1995). It

shows that under certain conditions on X, when p and n are large and of comparable size,
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V(Q, s) essentially only depends on the eigenvalues of Σ1/2QΣ1/2. Moreover, it shows how

to (approximately) calculate V(Q, s).

Theorem 5.3. Assume

1. Z = XΣ−1/2 has i.i.d. entries with mean 0, variance 1/n, and finite fourth moment;

2. p, n →∞ in such a way that p/n → γ ∈ [0,∞);

3. Q is a random matrix independent of X;

4. The empirical spectral distribution FQ
n of Σ1/2QΣ1/2 converges almost surely to a

non-random limit F .

Then with probability 1

lim
p,n→∞

1
n

V(Q, s) =
1
s
(1− η) , (5.3.8)

where η ∈ [0, 1] satisfies the equation

1− η = γ

[
1−

∫
1

1 + sηx
dF (x)

]
. (5.3.9)

A simple consequence of the theorem is that V(Q, s) is asymptotically upper

bounded by an easy to compute function of Σ1/2QΣ1/2. That is shown in this corollary.

Corollary 5.4.

lim
p,n→∞

1
n

V(Q, s) ≤ γ

∫
x

1 + sx
dF (x) (5.3.10)
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5.4 Proofs

The proofs of the bounds depend on the following expansion of mspe(k, A, B).

mspe(k, A, β) = k2 tr
{
(XAXT + kI)−2XββT XT

}

+ σ2 tr
{
(XAXT + kI)−2(XAXT )2

}

= k2 tr
{
(XAXT + kI)−2XββT XT

}

+ σ2 tr
{
(XAXT + kI)−2(XAXT + kI − kI)(XAXT )

}

= σ2 tr
{
(XAXT + kI)−1(XAXT )

}
(5.4.1)

+ k tr
{
(XAXT + kI)−2X[kββT − σ2A]XT

}
.

The next lemma is also used in the proofs of the upper and lower bounds. It lower bounds

MMSPE(k,A, B) by averaging over mspe(k, A, β) when β is distributed on the surface of

the ellipsoid B.

Lemma 5.5.

MMSPE(k, A, B) ≥ σ2 tr
{
(XAXT + kI)−1(XAXT )

}

+ k tr
{
(XAXT + kI)−2X[kB − σ2A]XT

}
.

Proof. Let U be a random variable distributed uniformly on the sphere Sp−1 = {u ∈ Rp :

||u|| = 1} and let δ = B1/2U . Then δδT ≤ B and with Equation (5.4.1),

MMSPE(k,A, B) = max
β:ββT≤B

mspe(k, A, β) ≥ mspe(k,A, δ)

= σ2 tr
{
(XAXT + kI)−1(XAXT )

}

+ k tr
{
(XAXT + kI)−2X[kδδT − σ2A]XT

}
.
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Since the distribution of U is rotationally invariant, EUUT = I and so EδδT = B. Thus,

by taking expectation over the distribution of U we have

MMSPE(k, A, B) ≥ σ2 tr
{
(XAXT + kI)−1(XAXT )

}

+ k tr
{
(XAXT + kI)−2X[kB − σ2A]XT

}
.

Theorem 5.1

Proof. After applying Lemma 5.5 with B = A, we have

MMSPE(k, A, B) ≥ σ2 tr
{
(XAXT + kI)−1(XAXT )

}

+ k tr
{
(XAXT + kI)−2X[kA− σ2A]XT

}
.

Let λj be the eigenvalues of XAXT . The right side of the above lower bound is equal to

∑

j

σ2λj(λj + k) + k(k − σ2)λj

(λj + k)2
=

∑

j

λj(k2 + σ2λj)
(λj + k)2

.

Differentiating with respect to k we see that the above is minimized when

∑

j

kλj(λj + k)− λj(k2 + σ2λj)
(λj + k)3

= 0 .

That occurs when k = σ2. Thus,

MMSPE(k,A, B) ≥ σ2 tr
{
(XAXT + σ2I)−1(XAXT )

}
.

We will use the following lemma in the proof of Theorem 5.2.

Lemma 5.6. Suppose that k ≥ 0. Then the singular values of

D = kCT (CCT + kI)−2C

are bounded above by 1.
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Proof. Let si be the singular values of C. Then the singular values of D are

ks2
i

(s2
i + k)2

=
(

k

s2
i + k

) (
s2
i

s2
i + k

)
≤ 1 .

Theorem 5.2

Proof. We begin with proving Equation (5.3.4). From Equation (5.4.1),

MMSPE(k, A, B) = max
β:ββT≤B

mspe(k, A, B)

≤ σ2 tr
{
(XAXT + kI)−1(XAXT )

}

+ k tr
{
(XAXT + kI)−2X[kB − σ2A]XT

}
. (5.4.2)

Since A > 0, we may write the above as

MMSPE(k, A, B) ≤ σ2 tr
{
(XAXT + kI)−1(XAXT )

}
+ tr(DE) , (5.4.3)

where

D = kA1/2XT (XAXT + kI)−2XA1/2

and

E = kA−1/2BA−1/2 − σ2I .

Using the spectral theorem, decompose E as the difference E = E+ − E− where E+ and

E− are both positive matrices. Then

tr(DE) = tr(DE+)− tr(DE−) =
∑

j

sj(DE+)−
∑

j

sj(DE−) , (5.4.4)

where s1(·) ≥ s2(·) ≥ . . . are the singular values of the matrix. Since D is positive,

tr(DE) ≤
∑

j

sj(DE+) .
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Applying a trace inequality of Von Neumann (see Mirsky 1975 or Theorem IV.2.5 in Bhatia

1997) and then Lemma 5.6 applied to D gives

∑

j

sj(DE+) ≤
∑

j

sj(D)sj(E+) ≤
∑

j

sj(E+) . (5.4.5)

Thus,

tr(DE) ≤
∑

j

sj(E+)

and together with Equation (5.4.3) we have shown that

MMSPE(k, A, B) ≤ σ2 tr
{
(XAXT + kI)−1(XAXT )

}

+ tr{[kA−1/2BA−1/2 − σ2I]+} .

(5.4.6)

Then taking k = σ2/α completes the proof of Equation (5.3.4), because A−1/2BA−1/2 and

BA−1 have the same eigenvalues.

For Equation (5.3.5), we will use a similar argument as above, but begin with

Lemma 5.5.

MMSPE(k,A, B) ≥ σ2 tr
{
(XAXT + kI)−1(XAXT )

}
+ tr(DE) , (5.4.7)

where D and E are as defined above. Similarly to Equation (5.4.4) and Equation (5.4.5),

tr(DE) ≥ − tr(DE−) ≥ −
∑

j

sj(DE−)

≥ −
∑

j

sj(E−) = tr{[kA−1/2BA−1/2 − σ2I]−} .

Letting k = σ2/α completes the proof of Equation (5.3.5).

In the second part of the theorem we only assume that A ≥ 0. Note that B ≤ Aα∗

implies that in Equation (5.4.2),

k tr
{
(XAXT + kI)−2X[kB − σ2A]XT

}
≤ 0
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when k = σ2/α ≤ σ2/α∗. Similarly, B ≥ Aα∗ implies that in Lemma 5.5,

k tr
{
(XAXT + kI)−2X[kB − σ2A]XT

}
≥ 0

when k = σ2/α ≥ σ2/α∗.

Theorem 5.3

Proof.

1
n

V(Q, s) =
1
n

tr
{
(sXQXT + I)−1(XQXT )

}

=
∫

x

1 + sx
dFQ

n (x)

=
1
s

[
1−

∫
1

1 + sx
dFQ

n (x)
]

.

s 0→
∫

1
1+sx dFQ

n (x) is the η-transform of FQ
n (Silverstein and Tulino, 2006) and according

to Theorem 3 of Silverstein and Tulino (2006),

∫
1

1 + sx
dFQ

n (x) a.s.→ η ,

where η satisfies

γ =
1− η

1−
[∫

1
1+sηx dF (x)

] .
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H. Künsch. Discrimination between monotonic trends and long-range dependence. Journal

of Applied Probability, 23(4):1025–1030, Jan 1986.
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