Fantope Projection and Selection:

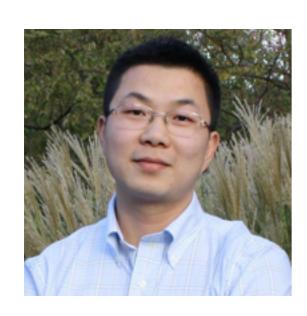
Near-optimal convex relaxation of Sparse PCA

Vincent Q. Vu

Department of Statistics
The Ohio State University

with J. Lei (CMU), J. Cho (Wisc), K. Rohe (Wisc)

This talk is based on work with...

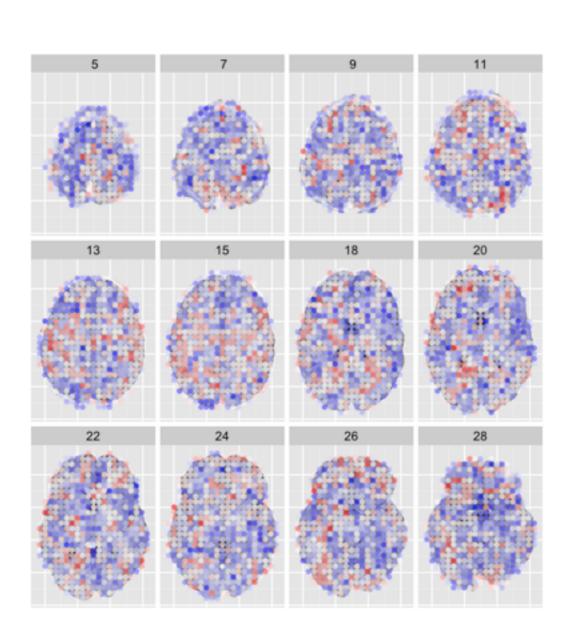


Jing Lei Carnegie Mellon U. U. Wisconsin-Madison U. Wisconsin-Madison

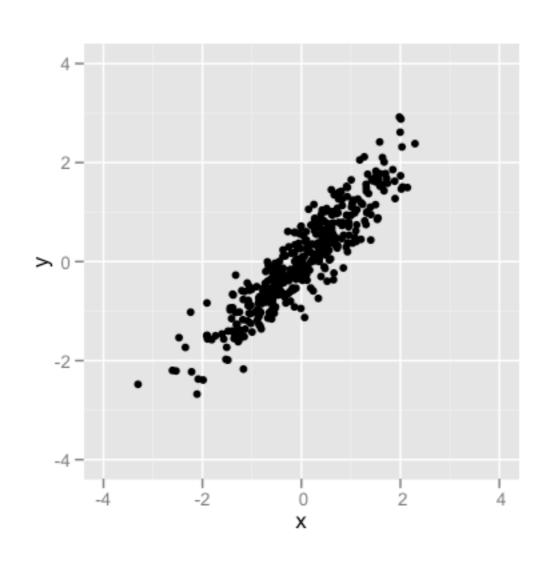
Juhee Cho

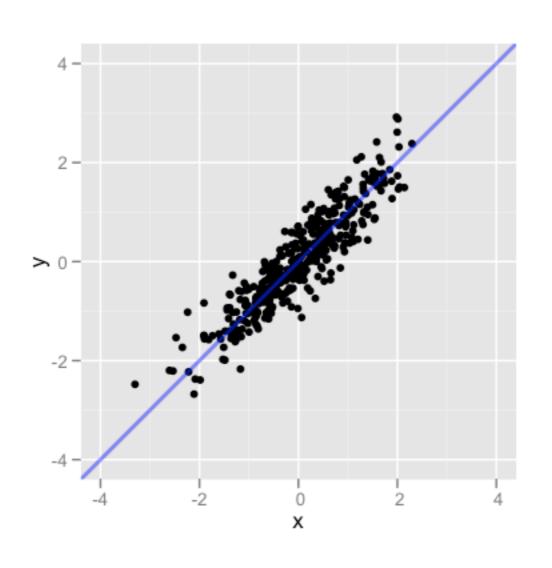
Karl Rohe

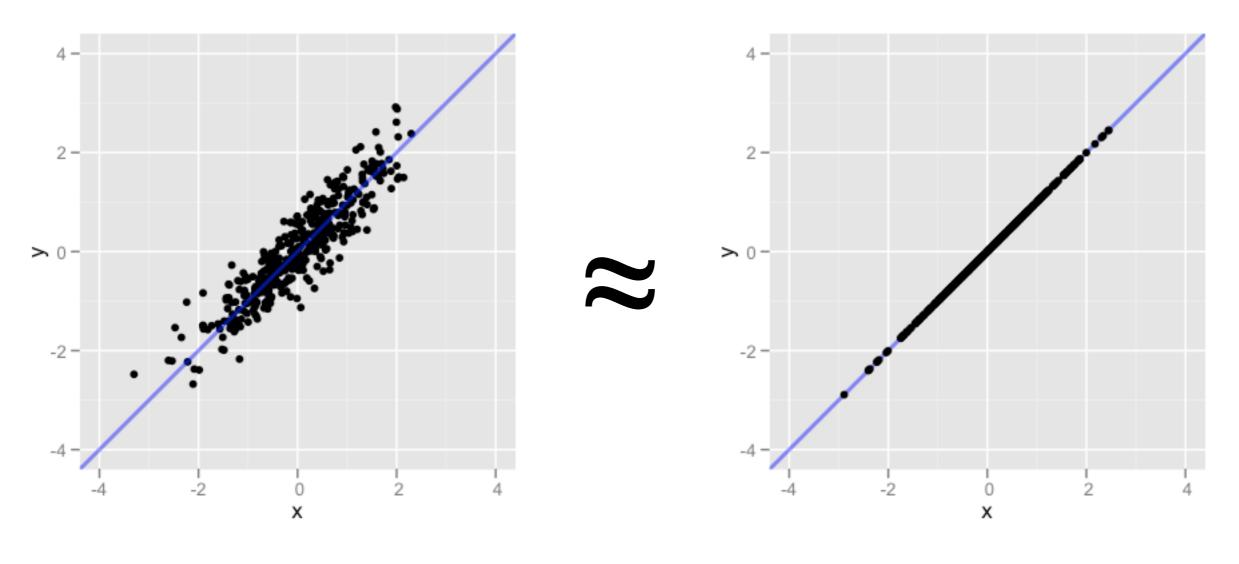
Example: fMRI



- $\mathbf{n} \approx 10^2 \sim 10^3 \text{ images}$
- $p \approx 10^5 \sim 10^6 \text{ voxels}$
- Scientists interested in joint modeling of voxels
- But... challenging because of high-dimensionality
- Dimension reduction can be beneficial







original data

lower-dimensional projection

- Suppose { X₁, X₂, ..., X_n} is a dataset of i.i.d. observations on **p** variables
- p is *large*, so want to use PCA for dimension reduction

PCA

Population covariance* and its eigendecomposition

$$\Sigma := \mathbb{E}(XX^T)$$

$$= \lambda_1 v_1 v_1^T + \dots + \lambda_p v_p v_p^T$$

eigenvalues $\lambda_1 \geq ... \geq \lambda_p$ and eigenvectors $v_1, ..., v_p$

"Optimal" d-dimensional projection

$$\Pi_k = V_k V_k^T, \quad V_k = (v_1, \dots, v_k)$$

(*assume $\mathbb{E}X = 0$ to simplify presentation)

Classic PCA estimate

Sample covariance and its eigendecomposition

$$\hat{\Sigma} = n^{-1} (X_1 X_1^T + \dots + X_n X_n^T)$$

$$= \hat{\lambda}_1 \hat{v}_1 \hat{v}_1^T + \dots + \hat{\lambda}_p \hat{v}_p \hat{v}_p^T$$

PCA estimate of d-dimensional projection

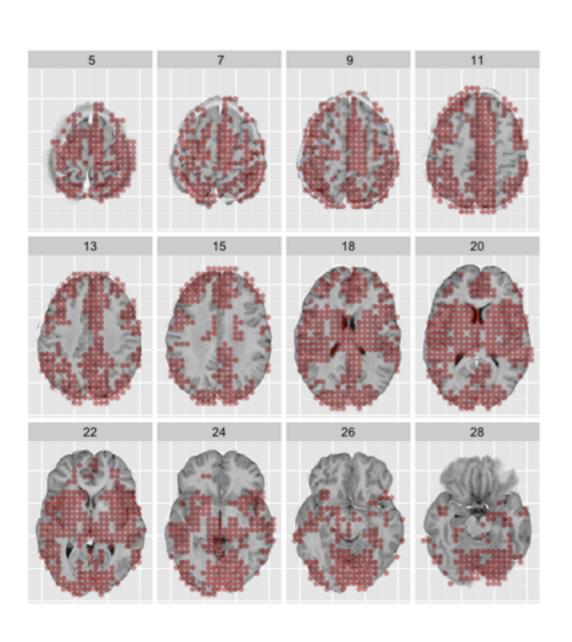
$$\widehat{\Pi}_k = \widehat{V}_k \widehat{V}_k^T, \quad \widehat{V}_k = (\widehat{v}_1, \widehat{v}_2, \dots, \widehat{v}_k)$$

Consistent (converges to truth) when **p** is <u>fixed</u> and
 n→∞

High-dimensional challenges

- In contemporary applications, e.g. neuroimaging:
 p ≈ n and often p > n
- When $\mathbf{p/n} \to \mathbf{c} \in (0,\infty]$, classic PCA can be inconsistent (Johnstone & Lu '09), (e.g. $\hat{v}_1^T v_1 \approx 0$) and/or difficult to interpret
- Sparse PCA can help

Example: fMRI



- "Interesting" activity often spatially localized
- Locations not known in advance
- Localization = sparsity
- Combine dimension reduction and sparsity?

Outline

- Sparse PCA and subspace estimation
- A convex relaxation and its near-optimality
- Some synthetic examples
- Whither sparisity?

Sparse PCA and Subspace Estimation

Sparse PCA

Many methods proposed over past 10 years:

Joliffe, et al. (2003); Zou, et al. (2006); d'Aspremont, et al. (2007); Shen and Huang (2008); Johnstone and Lu (2009); Witten, et al. (2009); Journée et al. (2010); and many more

- Mostly algorithmic proposals for k=1
- Few theoretical guarantees on statistical error and strong assumptions (e.g. spiked covariance model)

Subspace sparsity

- If $\lambda_1 = \lambda_2 = ... = \lambda_k$, then cannot distinguish V_k and $V_k Q$ from observed data for any orthogonal Q
- Good notion of sparsity must be rotation invariant
- Row sparsity two equivalent definitions:
 - At most **s** rows of V_k (and hence Π_k) are nonzero
 - Projection depends on fewer than s variables

General sparse PCA model

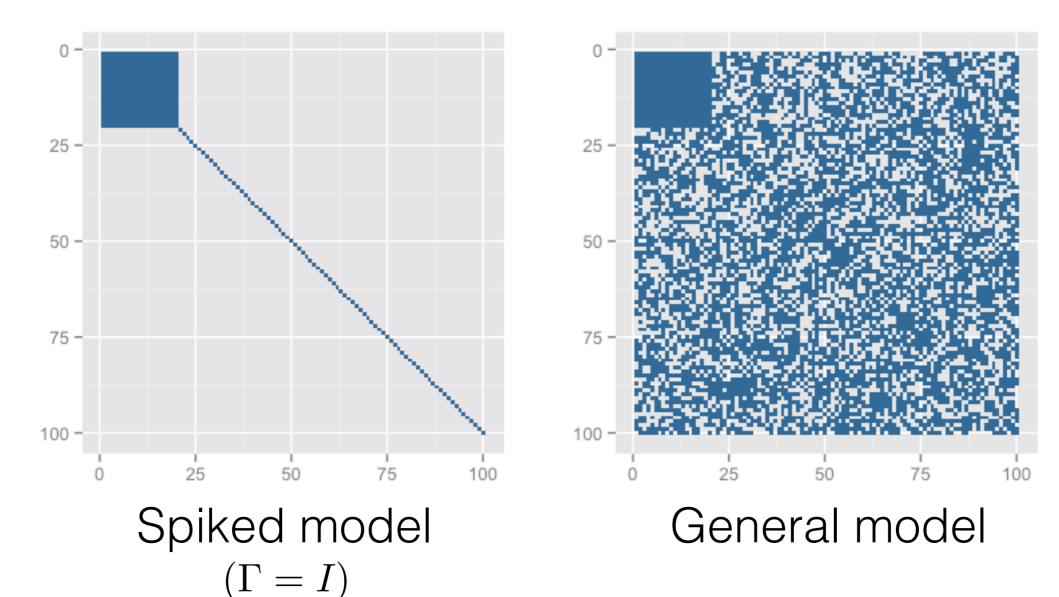
$$\Sigma = \begin{bmatrix} UDU^T & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{bmatrix} \;, \quad \Pi_k = \begin{bmatrix} UU^T & 0 \\ 0 & 0 \end{bmatrix}$$
 signal noise

$$\begin{aligned} \textbf{signal} &= \lambda_1 v_1 v_1^T + \dots + \lambda_k v_k v_k^T \\ \textbf{noise} &= \lambda_{k+1} v_{k+1} v_{k+1}^T + \dots + \lambda_p v_p v_p^T \\ D &= \operatorname{diag}(\lambda_1, \dots, \lambda_k) \\ U &= \operatorname{nonzero block of } \mathbf{V_k} \end{aligned}$$

Decomposition always exists (for some **s**) and unique when $\lambda_k > \lambda_{k+1}$

Spiked model vs General model

Locations of large nonzero entries: $|\Sigma(i,j)| \ge 0.01$



Sparsity enables estimation

Theorem (VL '13)

Under the sparse PCA model*, the optimal error rate of estimating Π_k is

$$\min_{\widehat{\Pi}_k} \max_{\Sigma} \mathbb{E} \|\widehat{\Pi}_k - \Pi_k\|_F^2 \asymp s \cdot \frac{\lambda_1 \lambda_{k+1}}{(\lambda_k - \lambda_{k+1})^2} \cdot \frac{k + \log p}{n}$$

and can be achieved by

$$\widehat{\Pi}_k = \underset{\Pi}{\operatorname{arg\,max}} \operatorname{trace}(\widehat{\Sigma}\Pi)$$

where the max is over **s**-sparse, rank-**k** projection matrices.

Computation?

- Theorem gives optimal dependence on (n,p,s,k,λ₁,λ_k,λ_{k+1})
- No additional assumptions on noise Γ
 (e.g., spiked covariance model not necessary)
- But constructed minimax optimal estimator is impractical to compute :-(

Convex Relaxation

Convex relaxation of sparse PCA

Fantope Projection and Selection (VLCR '13)

$$\max_{H} \operatorname{trace}(\widehat{\Sigma}H) - \rho \sum_{ij} |H_{ij}| \quad \text{subject to} \quad \begin{cases} 0 \leq H \leq I \\ \operatorname{trace}(H) = k \end{cases}$$

PCA sparsity convex hull of rank-k $(\rho \ge 0)$ projection matrices

Constraint set called **Fantope** (*Fillmore & Williams '71*, Overton & Womersly '02) — named after Ky Fan

FPS

- Solved efficiently by alternating direction method of multipliers (ADMM) with two main steps:
 - Projection onto Fantope (≈ same difficulty as SVD)
 - Entry-wise soft-thresholding (L₁ proximal operator)
- Iteration complexity O(p³) but typically O(kp²) and dependent on choice of tuning parameter p

FPS is near-optimal

Theorem (VLCR '13)

Under the sparse PCA model*, if

$$\rho \sim \sqrt{\log p/n}$$

then any solution \widehat{H} of **FPS** satisfies (with high probability)

$$\|\widehat{H} - \Pi_k\|_F^2 \lesssim s^2 \cdot \frac{\lambda_1 \lambda_{k+1}}{(\lambda_k - \lambda_{k+1})^2} \cdot \frac{\log p}{n}$$

Computational barrier?

When subspace dimension k=1

$$\frac{\text{FPS error rate}}{\text{optimal error rate}} \sim s$$

- Extra factor s maybe unavoidable for polynomial time algorithms (Berthet & Rigollet '13)
- Maybe possible to get tighter rate under stronger assumptions, e.g. spiked covariance?

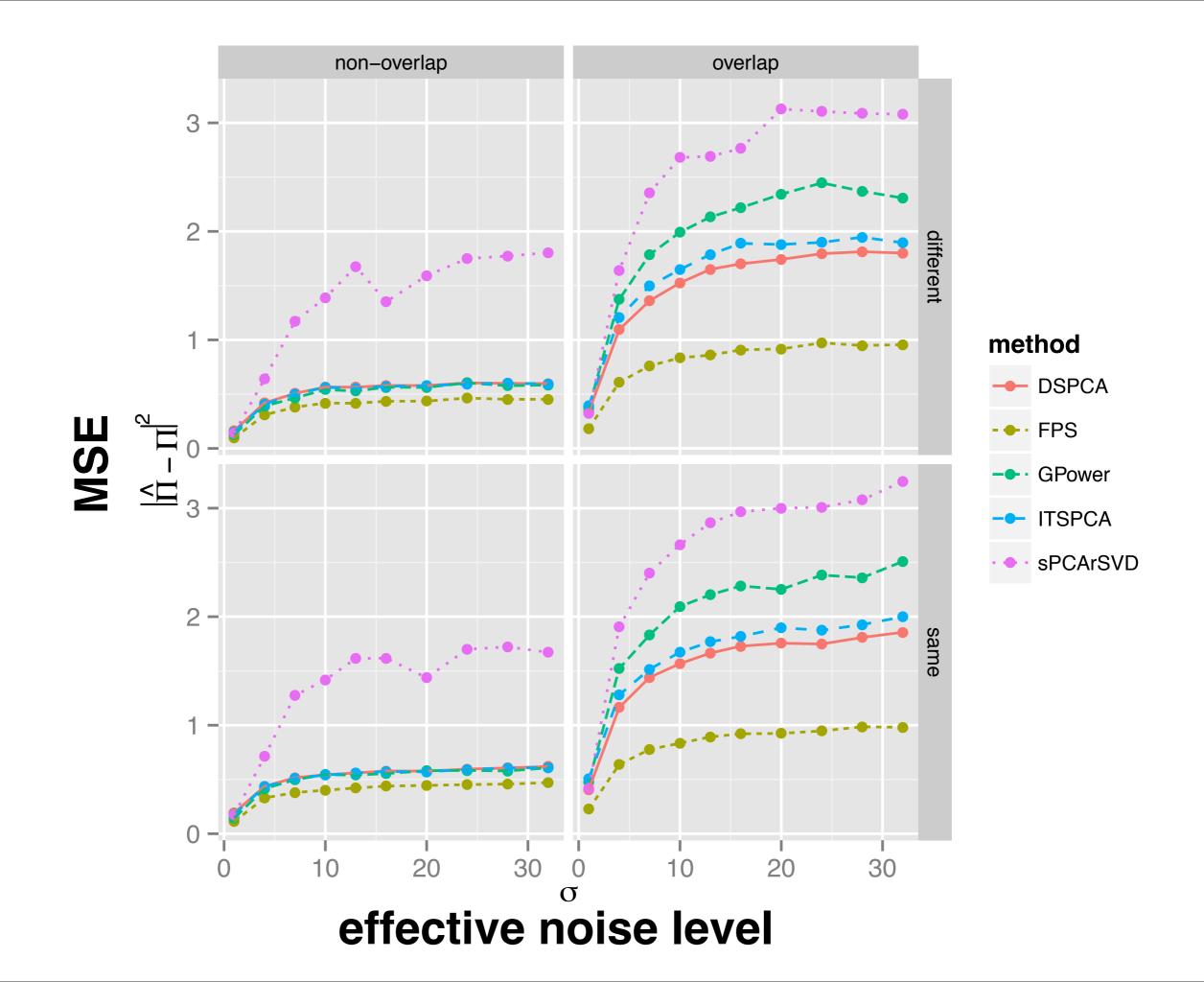
Examples

Simulation

- n = 256, p = 512, k = 6
- True projection matrix: s = 30 non-zero rows
- Sparsity pattern: one overlapping block or three nonoverlapping blocks
- · Leading eigenvalues: all same or different
- Effective noise level σ^2 varied by adjusting spectral gap
- Error criterion: MSE (averaged over 100 simulations)

Methods

- DSPCA (d'Aspremont et al. '07) (same as k=1 FPS)
- Variations on iterative thresholding / truncated power
 - GPower (Journée et al. '10)
 - ITSPCA (Ma '13)
 - sPCA-rSVD (Shen & Huang '08; Witten et al. '09)
- Tuning parameter selected by cross-validation

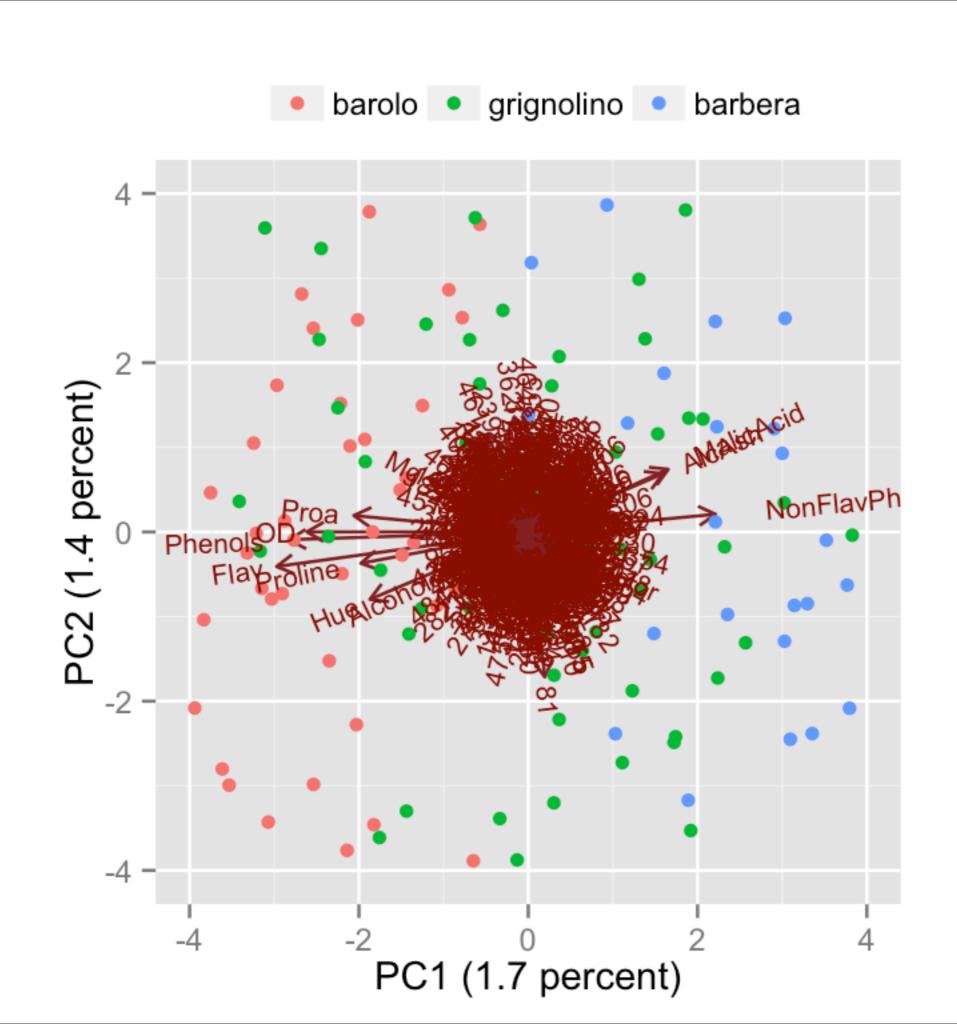


Observations

- All methods about the same when spectral gap is huge (noise ≈ 0)
- All methods degrade as spectral gap decreases
- Iterative thresholding methods degrade substantially when sparsity pattern of eigenvectors overlap
- Iterative thresholding methods generally faster, but have larger error

Wine data

- Data on n=178 wines grown over a decade in the same region of Italy; Measurements on s=13 constituents
- Divided into 3 different cultivars: Barolo, Grignolino, Barbera
- Synthetically enlarged by adding 487 noise variables by randomly, independently copying and permuting the real variables – resulting p=500
- Next movie shows k=2 and effect of changing tuning parameter p from min to max (and back)



Sparsity?

Sparsity?

- Sparsity is a strong assumption
- Important questions
 - If sparsity is **true**, can we recover the sparsity pattern?
 - If sparsity is **false**, can we still interpret? **Yes** see arXiv preprint

FPS is sparsistent

Theorem (LV '14)

Under the sparse PCA model, FPS is **unique** and **correctly selects** the relevant variables with high probability if

$$n\gtrsim s^2\log p$$
 sample complexity* $\|\Gamma_{21}\|_{2 o 1}\lesssim 1/s$ incoherence $\min_{j\le s}\Pi_{jj}\gtrsim s\sqrt{\log p/n}$ signal strength $\rho\sim\sqrt{\log p/n}$ tuning parameter

(omitted constants depend on eigenvalues)

* minimax lower bound ~ s log p (Amini & Wainwright 2009)

Summary

- Sparse PCA is an important topic simultaneous dimension reduction and variable selection
- Convex relaxation is nearly statistically optimal and applicable to general models under weak conditions
- Consistent sparsity pattern recovery requires true sparsity and stronger conditions
- But sparsity not necessary for sparse PCA to be useful or for its theoretical justification

Thank you!

References

- VL ('12) "Minimax rates of estimation for sparse PCA in high dimensions." AISTATS
- VL ('13) "Minimax sparse principal subspace estimation in high dimensions." Annals of Statistics
- VCLR ('13) "Fantope projection and selection." NIPS; extended version in preparation
- LV ('14) "Sparsistency and agnostic inference in sparse PCA."
 arXiv preprint; submitted