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Outline

• Background on PCA and high-dimensions

• Sparsity of the leading eigenvector

• Consistent estimation and minimax theory

• Sparse principal subspaces

• Computationally tractable estimation



High-Dimensional PCA



“In many physical, statistical, and biological 
investigations it is desirable to represent a 
system of points in ... higher dimensioned space 
by the ‘best fitting’ straight line or plane.”

– Karl Pearson (1901)
On lines and  planes of closest fit to systems of points in space
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projection

original data



Principal Components Analysis

• Suppose { X1, X2, ..., Xn } is a dataset of i.i.d. 
observations on p variables

• p is large, so PCA could be used for 
dimension reduction



Principal Components Analysis

“Optimal” dimension reduction is determined 
by eigenvectors of the population 
covariance matrix:

(assume             to simplify presentation)

⌃ ⌘ E(XXT )

EX = 0
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Principal Components Analysis

(eigenvalues)

⌃ = V ⇤V T = �1v1v
T
1 + · · ·+ �pvpv

T
p

⇤ = diag(�1, . . . ,�p), �1 � · · · � �p � 0

V = (v1, . . . , vp), V
TV = Ip (eigenvectors)

Eigendecomposition

⇧1 = v1v
T
1

⇧d = VdV
T
d , Vd = (v1, . . . , vd)

(rank-1projector)

(rank-d projector)

Optimal projector



Classical PCA

Estimate eigenvectors by eigendecomposition 
of sample covariance matrix:

b⌃ ⌘ 1
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Classical PCA

Standard PCA estimator:
bVd = (v̂1, . . . , v̂d), b⇧d = bVd

bV T
d

Standard theory for p fixed and n→∞:
b⇧d ! ⇧d a.s. if �d � �d+1 > 0

Estimate eigenvectors by eigendecomposition 
of sample covariance matrix:

b⌃ ⌘ 1
n

Pn
i=1 XiXT

i
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High-Dimensional PCA:
Challenges

• In modern applications, e.g. neuroimaging, 
genetics: p≈n and often p>>n

• Accuracy: Standard PCA estimator can be 
inconsistent (Johnstone & Lu 2009):

• Interpretability: PCA difficult to interpret 
when estimated projector depends on many 
variables

v̂T1 v1 ⇡ 0 (when p/n ! c > 0,�1 � �2 ! c0 > 0)



PCA in High-Dimensions

• Unconstrained estimation generally 
inconsistent

• Need additional structural constraints 
to have consistency

• What structural constraints make sense?
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Sparsity
• Few variables have large effects – most others 

negligible

• Sometimes appropriate after sparsifying 
transformation

– smoothness, localization, or periodicity 
correspond to sparsity in known bases: e.g. 
wavelets or Fourier

• Can make estimation feasible and enhance 
interpretability
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Example: fMRI

• p ≈ 10,000 ~ 40,000

• “Interesting” activity 
spatially localized

• Locations not 
known in advance

• Sparsity = spatial 
localization
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Sparse PCA

• Many methods proposed over last 10 years:

Joliffe, et al. (2003); Zou, et al. (2006); d’Aspremont, et al. 
(2007); Shen and Huang (2008); Johnstone and Lu (2009); 
Witten, et al. (2009); Journée et al. (2010); and many more

• Mostly algorithmic proposals

• Few theoretical guarantees on statistical error – 
strong assumptions (spiked covariance model)
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Sparse PCA framework
(d=1 case)

• Goal: Estimate principal eigenvector

• Identifiability condition: 

• Sparsity assumption:

• Covariance assumption –

• Spiked model:

• General model:

• i.i.d. sub-Gaussian data

v1

kv1k0  R0 ⌧ p

�1 > �2

⌃ = �1v1v
T
1 + · · ·+ �pvpv

T
p

⌃ = (�1 � �2)v1v
T
1 + �2Ip



Spiked Model vs General Model

Spiked model General model

Locations of large nonzero entries: |⌃(i, j)| � 0.01

kv1k0 = 20
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How does sparsity help PCA?

• Questions

• How well can we estimate v1 if sparsity assumed?

• How do we estimate v1 if sparsity assumed?

• Intuition – Estimation is easy if

• R0 small and λ1-λ2 large

• Under spiked model (Johnstone & Lu 2003/9) 
give a consistent estimator of v1 when p/n→c



Minimax theory
(d = 1 case)



Find                        such that

for all estimators     and a 
particular estimator      such that

for all covariance matrices in the sparse PCA 
model.

Minimax Framework

f(n, p,R0,�1,�2) . sup
⌃

Ekv̂1 � v1k22

f(n, p,R0,�1,�2)

v̂1
v̂1

sup
⌃

Ekv̂1 � v1k22 . f(n, p,R0,�1,�2)



Under the spiked model Birnbaum et al. (2013) 
and Ma (2013) show that (roughly)

where the estimator is a thresholded power 
method (up to log n factor)

Existing results for d=1

f(n, p,R0,�1,�2) ⇠
R0

n
· �1�2

(�1 � �2)
2
· log p



Under the spiked model Birnbaum et al. (2013) 
and Ma (2013) show that (roughly)

where the estimator is a thresholded power 
method (up to log n factor)

Existing results for d=1

f(n, p,R0,�1,�2) ⇠
R0

n
· �1�2

(�1 � �2)
2
· log p

Can we close the log term gap?  
What about the general model?



Minimax Optimal Rate

Theorem (V and Lei, 2013)

Under the general model, the minimax error rate of 
estimating v1 is

where the exact rate is achieved by

f(n, p,R0,�1,�2) ⇣
R0

n
· �1�2

(�1 � �2)
2
· log p

v̂1 = argmax

kvk2=1,kvk0R0

vT b
⌃v
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Consequences

• Good news

• Exact minimax rate in (n,p,R0,λ1, λ2) for general model

• Extensions to Lq sparsity provide first consistency result 
for Lq constrained/penalized PCA (Joliffe et al 2003, Shen 
and Huang 2008, Witten et al 2009)

• Bad news

• Estimator is computationally intractable (NP-hard in p)

• Estimation not possible if λ1 ≈ λ2
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Multiple Eigenvectors?

• Most sparse PCA methods only estimate single 
eigenvectors, and are extended to multiple 
eigenvectors by iterative deflation

• Iterative deflation methods are heuristic and can 
be suboptimal (Mackey 2009)

• If λ1 ≈ λ2, then it makes less sense to think about 
distinct eigenvectors
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Sparse Principal Subspaces

• Identifiability – If λ1 = λ2 = ... = λd then 
impossible to distinguish Vd and VdQ from the data 
for any orthogonal Q.

• Sparsity – How to extend sparsity to subspaces? 
Good notion of sparsity should be rotation 
invariant

• Intuitively – A subspace is sparse if its projector 
depends on a small number of variables



Projection depends on 
13 variables

Sparse Not sparse

Projection depends on 
500 variables



Row sparsity

• Matrix (2,0)-norm – for any p × d matrix

• Row sparsity:

• Row sparsity is rotation invariant – for any 
orthogonal Q:

kV k2,0 = # of nonzero rows in V

kVdk2,0  R0 ⌧ p, Vd = (v1, . . . , vd)

kVdk2,0 = kVdQk2,0



• Measure distance between two subspaces 
with canonical angles

• Sum of squares of sines of canonical angles

• If d=1, equivalent to squared Euclidean 
distance

Subspace distance

ksin⇥(V̂d, Vd)k2F =
1

2
kV̂dV̂

T
d � VdV

T
d k2F



Minimax Optimal Rate (d≥1)

Theorem (V and Lei, 2013)

Under the general model, the minimax error rate of 
estimating Vd is

where the exact rate is achieved by

ˆVd = argmax

V TV=Id,kV k2,0R0

trace(V T b
⌃V )

Rate independently obtained by Cai et al. (2013) for Gaussian spiked model

min

V̂d

max

⌃
Eksin⇥(

ˆVd, Vd)k2F ⇣ R0 ·
�1�d+1

n(�d � �d+1)
2
· (d+ log p)



optimal
minimax

rate
⇣ R0 ·

�1�d+1

n(�d � �d+1)
2
· (d+ log p)



# of active variables

optimal
minimax

rate
⇣ R0 ·

�1�d+1

n(�d � �d+1)
2
· (d+ log p)



# of active variables

effective noise variance

optimal
minimax

rate
⇣ R0 ·

�1�d+1

n(�d � �d+1)
2
· (d+ log p)



# of active variables

estimation error

effective noise variance

optimal
minimax

rate
⇣ R0 ·

�1�d+1

n(�d � �d+1)
2
· (d+ log p)



# of active variables

estimation error

selection error

effective noise variance

optimal
minimax

rate
⇣ R0 ·

�1�d+1

n(�d � �d+1)
2
· (d+ log p)
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Consequences

• Good news

• Exact minimax rate for general model

• Sparsity enables estimation in high-dimensions

• Extensions to Lq (weak) row sparsity

• Bad news

• Estimator is computationally intractable (NP-hard)
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Sparse PCA computation

• Almost all formulations of sparse PCA involve:

• Non-convex optimization problems with no 
statistical guarantees for local optima

• Strong assumptions and sensitivity to initial 
value

• Is there a polynomial time method with 
strong statistical guarantees for the 
general model?



Minimax Optimal Estimator 
– but NP-Hard
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Minimax Optimal Estimator 
– but NP-Hard

argmax

V
trace(V T b

⌃V )� �kV k2,0

subject to V TV = Id

or, equivalently,

argmax

Z
trace(

b
⌃Z)� �kZk2,0

subject to Z 2 {Z : Z is a rank-d projector}
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Difficulties
argmax

Z
trace(

b
⌃Z)� �kZk2,0

subject to Z 2 {Z : Z is a rank-d projector}

• Penalty is non-convex

• Constraint set is non-convex

• Solution? Use convex hulls!



Convex Relaxation
argmax

Z
trace(

b
⌃Z)� �kZk2,0

subject to Z 2 {Z : Z is a rank-d projector}
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• Convex penalty function – entrywise L1 norm
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Convex Relaxation

• Convex penalty function – entrywise L1 norm

• Convex constraint set – The Fantope

• Amazing fact – Fantope is convex hull of rank-
d projectors (see Overton & Womersley, 1992)

argmax

Z
trace(

b
⌃Z)� �kZk1

subject to Z 2 {Z : 0 � Z � I and trace(Z) = d}



Fantope Projection and Selection

• Equivalent to a semidefinite program (SDP)

• d=1 case proposed by d’Aspremont et al. 
2007

• Avoids orthogonality/deflation issues by 
directly estimating projector

argmax

Z
trace(

b
⌃Z)� �kZk1

subject to Z 2 {Z : 0 � Z � I and trace(Z) = d}
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Fantope Projection and Selection

• Computable in polynomial time

• Alternating Direction Method of Multipliers 
(ADMM) algorithm has two main steps:

• Fantope Projection – have exact analytic 
solution

• Element-wise soft-thresholding (selection)



Guarantee for FPS

Theorem (VLCR 2013)

Under the general model, assume the principal 
subspace is R0 row-sparse.  If regularization parameter 
chosen appropriately*, then FPS estimate     satisfies

with high probability, regardless of its rank.

*

bZ

� ⇣
p
(�1�d+1 log p)/n

k bZ � VdV
T
d k2F . R2

0 ·
�1�d+1

n(�d � �d+1)
2
· log p



FPS rate is off by factor of

FPS is near-Optimal
Recall minimax optimal rate (d=1) vs FPS rate:

minimax optimal FPS

SDP rate is off by factor of

R0

R2
0 ·

�1�d+1

n(�d � �d+1)
2
· log pR0 ·

�1�d+1

n(�d � �d+1)
2
· log p



FPS rate is off by factor of

FPS is near-Optimal
Recall minimax optimal rate (d=1) vs FPS rate:

minimax optimal FPS

SDP rate is off by factor of

When d=1, R0 factor maybe unavoidable for any 
polynomial time algorithm in a hypothesis testing 
framework (Berthet & Rigollet 2013)

R0

R2
0 ·

�1�d+1

n(�d � �d+1)
2
· log pR0 ·

�1�d+1

n(�d � �d+1)
2
· log p



Small illustration

• Data on n=178 wines grown over a decade 
in the same region of Italy

• 3 different cultivars: Barolo, Grignolino, 
Barbera

• Measurements on p=13 constituents

• Will show d=2 subspace estimated by FPS 
over a range of regularization parameter 
values





Vincent Vu
Movie not shown



Synthetic illustration

• Dataset synthetically enlarged by adding 
487 noise variables by randomly, 
independently copying and permuting the 
real variables – result n=178, p=500

• Does FPS recover the 13 real variables?

• Does FPS projection reveal the 3 clusters?





Vincent Vu
Movie not shown



Summary

• Sparsity helps both estimation accuracy and 
interpretation of PCA in high dimensions

• Row sparsity is a rotation invariant notion of 
subspace sparsity

• Minimax rates reveal gap between computationally 
tractable and optimal (NP-hard) procedures

• Convex relaxation (FPS) is near-optimal



Ongoing work

• Fast algorithm and computational insights 
for FPS to enable processing of larger scale 
data

• Is FPS rate optimal among polynomial time 
methods?



Thank you!
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